2 resultados para Through the Canal of Panama

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The question of evaluations of development projects has been widely debated within the field of international development, with scholars and development practitioners calling for increased community-driven evaluations. However, there has been a paucity of research in community-led project evaluations, and a largely absent investigation utilizing visual anthropology/sociology methodologies. This paper seeks to shift this power by giving voice to the intended beneficiaries of an eco-tourism project in a rural indigenous Guatemala village. Through photographs taken by community members and corresponding interviews, this paper shows the way in which community members have and continue to reframe the idea of development in their village. Specifically, my analysis reveals how residents see changing forms of access, how they reframe ideas of beauty and modernization, and how they reframe their relationship to the land through Western conservation and private property ideals. This research thus provides an alternative narrative to the Western NGO’s evaluations and knowledge production, especially in respect to development and indigenous knowledge. By showing how community members are reframing the story of development, this paper demonstrates the usefulness of using participatory documentary photography in community-led evaluations, and helps balance the playing field by providing a much-needed alternative narrative of project evaluation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteins are specialized molecules that catalyze most of the reactions that can sustain life, and they become functional by folding into a specific 3D structure. Despite their importance, the question, "how do proteins fold?" - first pondered in in the 1930's - is still listed as one of the top unanswered scientific questions as of 2005, according to the journal Science. Answering this question would provide a foundation for understanding protein function and would enable improved drug targeting, efficient biofuel production, and stronger biomaterials. Much of what we currently know about protein folding comes from studies on small, single-domain proteins, which may be quite different from the folding of large, multidomain proteins that predominate the proteomes of all organisms.

In this thesis I will discuss my work to fill this gap in understanding by studying the unfolding and refolding of large, multidomain proteins using the powerful combination of single-molecule force-spectroscopy experiments and molecular dynamic simulations.

The three model proteins studied - Luciferase, Protein S, and Streptavidin - lend insight into the inter-domain dependence for unfolding and the subdomain stabilization of binding ligands, and ultimately provide new insight into atomistic details of the intermediate states along the folding pathway.