6 resultados para Three Factor Model
em Duke University
Resumo:
Duarte et al. draw attention to the "embedding of liberal values and methods" in social psychological research. They note how these biases are often invisible to the researchers themselves. The authors themselves fall prey to these "invisible biases" by utilizing the five-factor model of personality and the trait of openness to experience as one possible explanation for the under-representation of political conservatives in social psychology. I show that the manner in which the trait of openness to experience is conceptualized and measured is a particularly blatant example of the very liberal bias the authors decry.
Resumo:
This dissertation is comprised of three essays in the economics of education. In the first essay, I examine how college students' major choice and major switching behavior responds to major-specific labor market shocks. The second essay explores the incidence and persistence of overeducation for workers in the United States. The final essay examines the role that students' cognitive and non-cognitive skills play in their transition from secondary to postsecondary education, and how the effect of these skills are moderated by race, gender, and socioeconomic status.
Resumo:
Constant technology advances have caused data explosion in recent years. Accord- ingly modern statistical and machine learning methods must be adapted to deal with complex and heterogeneous data types. This phenomenon is particularly true for an- alyzing biological data. For example DNA sequence data can be viewed as categorical variables with each nucleotide taking four different categories. The gene expression data, depending on the quantitative technology, could be continuous numbers or counts. With the advancement of high-throughput technology, the abundance of such data becomes unprecedentedly rich. Therefore efficient statistical approaches are crucial in this big data era.
Previous statistical methods for big data often aim to find low dimensional struc- tures in the observed data. For example in a factor analysis model a latent Gaussian distributed multivariate vector is assumed. With this assumption a factor model produces a low rank estimation of the covariance of the observed variables. Another example is the latent Dirichlet allocation model for documents. The mixture pro- portions of topics, represented by a Dirichlet distributed variable, is assumed. This dissertation proposes several novel extensions to the previous statistical methods that are developed to address challenges in big data. Those novel methods are applied in multiple real world applications including construction of condition specific gene co-expression networks, estimating shared topics among newsgroups, analysis of pro- moter sequences, analysis of political-economics risk data and estimating population structure from genotype data.
Resumo:
Extensive investigation has been conducted on network data, especially weighted network in the form of symmetric matrices with discrete count entries. Motivated by statistical inference on multi-view weighted network structure, this paper proposes a Poisson-Gamma latent factor model, not only separating view-shared and view-specific spaces but also achieving reduced dimensionality. A multiplicative gamma process shrinkage prior is implemented to avoid over parameterization and efficient full conditional conjugate posterior for Gibbs sampling is accomplished. By the accommodating of view-shared and view-specific parameters, flexible adaptability is provided according to the extents of similarity across view-specific space. Accuracy and efficiency are tested by simulated experiment. An application on real soccer network data is also proposed to illustrate the model.
Resumo:
Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.
Resumo:
Tumor angiogenesis is critical to tumor growth and metastasis, yet much is unknown about the role vascular cells play in the tumor microenvironment. A major outstanding challenge associated with studying tumor angiogenesis is that existing preclinical models are limited in their recapitulation of in vivo cellular organization in 3D. This disparity highlights the need for better approaches to study the dynamic interplay of relevant cells and signaling molecules as they are organized in the tumor microenvironment. In this thesis, we combined 3D culture of lung adenocarcinoma cells with adjacent 3D microvascular cell culture in 2-layer cell-adhesive, proteolytically-degradable poly(ethylene glycol) (PEG)-based hydrogels to study tumor angiogenesis and the impacts of neovascularization on tumor cell behavior.
In initial studies, 344SQ cells, a highly metastatic, murine lung adenocarcinoma cell line, were characterized alone in 3D in PEG hydrogels. 344SQ cells formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media that significantly increased with exposure to transforming growth factor beta 1 (TGF-β1), a potent tumor progression-promoting factor. Vascular cells alone in hydrogels formed tubule networks with localized activated TGF-β1. To study cancer cell-vascular cell interactions, the engineered 2-layer tumor angiogenesis model with 344SQ and vascular cell layers was employed. Large, invasive 344SQ clusters developed at the interface between the layers, and were not evident further from the interface or in control hydrogels without vascular cells. A modified model with spatially restricted 344SQ and vascular cell layers confirmed that observed 344SQ cluster morphological changes required close proximity to vascular cells. Additionally, TGF-β1 inhibition blocked endothelial cell-driven 344SQ migration.
Two other lung adenocarcinoma cell lines were also explored in the tumor angiogenesis model: primary tumor-derived metastasis-incompetent, murine 393P cells and primary tumor-derived metastasis-capable human A549 cells. These lung cancer cells also formed spheroids in 3D culture and secreted proangiogenic growth factors into the conditioned media. Epithelial morphogenesis varied for the primary tumor-derived cell lines compared to 344SQ cells, with far less epithelial organization present in A549 spheroids. Additionally, 344SQ cells secreted the highest concentration of two of the three angiogenic growth factors assessed. This finding correlated to 344SQ exhibiting the most pronounced morphological response in the tumor angiogenesis model compared to the 393P and A549 cell lines.
Overall, this dissertation demonstrates the development of a novel 3D tumor angiogenesis model that was used to study vascular cell-cancer cell interactions in lung adenocarcinoma cell lines with varying metastatic capacities. Findings in this thesis have helped to elucidate the role of vascular cells in tumor progression and have identified differences in cancer cell behavior in vitro that correlate to metastatic capacity, thus highlighting the usefulness of this model platform for future discovery of novel tumor angiogenesis and tumor progression-promoting targets.