7 resultados para Therapeutic

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress has become widely viewed as an underlying condition in a number of diseases, such as ischemia-reperfusion disorders, central nervous system disorders, cardiovascular conditions, cancer, and diabetes. Thus, natural and synthetic antioxidants have been actively sought. Superoxide dismutase is a first line of defense against oxidative stress under physiological and pathological conditions. Therefore, the development of therapeutics aimed at mimicking superoxide dismutase was a natural maneuver. Metalloporphyrins, as well as Mn cyclic polyamines, Mn salen derivatives and nitroxides were all originally developed as SOD mimics. The same thermodynamic and electrostatic properties that make them potent SOD mimics may allow them to reduce other reactive species such as peroxynitrite, peroxynitrite-derived CO(3)(*-), peroxyl radical, and less efficiently H(2)O(2). By doing so SOD mimics can decrease both primary and secondary oxidative events, the latter arising from the inhibition of cellular transcriptional activity. To better judge the therapeutic potential and the advantage of one over the other type of compound, comparative studies of different classes of drugs in the same cellular and/or animal models are needed. We here provide a comprehensive overview of the chemical properties and some in vivo effects observed with various classes of compounds with a special emphasis on porphyrin-based compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cognitive impairment is common following traumatic brain injury (TBI), and neuroinflammatory mechanisms may predispose to the development of neurodegenerative disease. Apolipoprotein E (apoE) polymorphisms modify neuroinflammatory responses, and influence both outcome from acute brain injury and the risk of developing neurodegenerative disease. We demonstrate that TBI accelerates neurodegenerative pathology in double-transgenic animals expressing the common human apoE alleles and mutated amyloid precursor protein, and that pathology is exacerbated in the presence of the apoE4 allele. The administration of an apoE-mimetic peptide markedly reduced the development of neurodegenerative pathology in mice homozygous for apoE3 as well as apoE3/E4 heterozygotes. These results demonstrate that TBI accelerates the cardinal neuropathological features of neurodegenerative disease, and establishes the potential for apoE mimetic therapies in reducing pathology associated with neurodegeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Platinum therapeutic agents are widely used in the treatment of several forms of cancer. Various mechanisms for the transport of the drugs have been proposed including passive diffusion across the cellular membrane and active transport via proteins. The copper transport protein Ctr1 is responsible for high affinity copper uptake but has also been implicated in the transport of cisplatin into cells. Human hCtr1 contains two methionine-rich Mets motifs on its extracellular N-terminus that are potential platinum-binding sites: the first one encompasses residues 7-14 with amino acid sequence Met-Gly-Met-Ser-Tyr-Met-Asp-Ser and the second one spans residues 39-46 with sequence Met-Met-Met-Met-Pro-Met-Thr-Phe. In these studies, we use liquid chromatography and mass spectrometry to compare the binding interactions between cisplatin, carboplatin and oxaliplatin with synthetic peptides corresponding to hCtr1 Mets motifs. The interactions of cisplatin and carboplatin with Met-rich motifs that contain three or more methionines result in removal of the carrier ligands of both platinum complexes. In contrast, oxaliplatin retains its cyclohexyldiamine ligand upon platinum coordination to the peptide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excessive iron absorption is one of the main features of β-thalassemia and can lead to severe morbidity and mortality. Serial analyses of β-thalassemic mice indicate that while hemoglobin levels decrease over time, the concentration of iron in the liver, spleen, and kidneys markedly increases. Iron overload is associated with low levels of hepcidin, a peptide that regulates iron metabolism by triggering degradation of ferroportin, an iron-transport protein localized on absorptive enterocytes as well as hepatocytes and macrophages. Patients with β-thalassemia also have low hepcidin levels. These observations led us to hypothesize that more iron is absorbed in β-thalassemia than is required for erythropoiesis and that increasing the concentration of hepcidin in the body of such patients might be therapeutic, limiting iron overload. Here we demonstrate that a moderate increase in expression of hepcidin in β-thalassemic mice limits iron overload, decreases formation of insoluble membrane-bound globins and reactive oxygen species, and improves anemia. Mice with increased hepcidin expression also demonstrated an increase in the lifespan of their red cells, reversal of ineffective erythropoiesis and splenomegaly, and an increase in total hemoglobin levels. These data led us to suggest that therapeutics that could increase hepcidin levels or act as hepcidin agonists might help treat the abnormal iron absorption in individuals with β-thalassemia and related disorders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Neurodegenerative diseases such as Huntington disease are devastating disorders with no therapeutic approaches to ameliorate the underlying protein misfolding defect inherent to poly-glutamine (polyQ) proteins. Given the mounting evidence that elevated levels of protein chaperones suppress polyQ protein misfolding, the master regulator of protein chaperone gene transcription, HSF1, is an attractive target for small molecule intervention. We describe a humanized yeast-based high-throughput screen to identify small molecule activators of human HSF1. This screen is insensitive to previously characterized activators of the heat shock response that have undesirable proteotoxic activity or that inhibit Hsp90, the central chaperone for cellular signaling and proliferation. A molecule identified in this screen, HSF1A, is structurally distinct from other characterized small molecule human HSF1 activators, activates HSF1 in mammalian and fly cells, elevates protein chaperone expression, ameliorates protein misfolding and cell death in polyQ-expressing neuronal precursor cells and protects against cytotoxicity in a fly model of polyQ-mediated neurodegeneration. In addition, we show that HSF1A interacts with components of the TRiC/CCT complex, suggesting a potentially novel regulatory role for this complex in modulating HSF1 activity. These studies describe a novel approach for the identification of new classes of pharmacological interventions for protein misfolding that underlies devastating neurodegenerative disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some patients with cancer never develop metastasis, and their host response might provide cues for innovative treatment strategies. We previously reported an association between autoantibodies against complement factor H (CFH) and early-stage lung cancer. CFH prevents complement-mediated cytotoxicity (CDC) by inhibiting formation of cell-lytic membrane attack complexes on self-surfaces. In an effort to translate these findings into a biologic therapy for cancer, we isolated and expressed DNA sequences encoding high-affinity human CFH antibodies directly from single, sorted B cells obtained from patients with the antibody. The co-crystal structure of a CFH antibody-target complex shows a conformational change in the target relative to the native structure. This recombinant CFH antibody causes complement activation and release of anaphylatoxins, promotes CDC of tumor cell lines, and inhibits tumor growth in vivo. The isolation of anti-tumor antibodies derived from single human B cells represents an alternative paradigm in antibody drug discovery.