9 resultados para The High Cost of Hasty Hiring

em Duke University


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Articular cartilage consists of chondrocytes and two major components, a collagen-rich framework and highly abundant proteoglycans. Most prior studies defining the zonal distribution of cartilage have extracted proteins with guanidine-HCl. However, an unextracted collagen-rich residual is left after extraction. In addition, the high abundance of anionic polysaccharide molecules extracted from cartilage adversely affects the chromatographic separation. In this study, we established a method for removing chondrocytes from cartilage sections with minimal extracellular matrix protein loss. The addition of surfactant to guanidine-HCl extraction buffer improved protein solubility. Ultrafiltration removed interference from polysaccharides and salts. Almost four-times more collagen peptides were extracted by the in situ trypsin digestion method. However, as expected, proteoglycans were more abundant within the guanidine-HCl extraction. These different methods were used to extract cartilage sections from different cartilage layers (superficial, intermediate, and deep), joint types (knee and hip), and disease states (healthy and osteoarthritic), and the extractions were evaluated by quantitative and qualitative proteomic analyses. The results of this study led to the identifications of the potential biomarkers of osteoarthritis (OA), OA progression, and the joint specific biomarkers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The best wind sites in the United States are often located far from electricity demand centers and lack transmission access. Local sites that have lower quality wind resources but do not require as much power transmission capacity are an alternative to distant wind resources. In this paper, we explore the trade-offs between developing new wind generation at local sites and installing wind farms at remote sites. We first examine the general relationship between the high capital costs required for local wind development and the relatively lower capital costs required to install a wind farm capable of generating the same electrical output at a remote site,with the results representing the maximum amount an investor should be willing to pay for transmission access. We suggest that this analysis can be used as a first step in comparing potential wind resources to meet a state renewable portfolio standard (RPS). To illustrate, we compare the cost of local wind (∼50 km from the load) to the cost of distant wind requiring new transmission (∼550-750 km from the load) to meet the Illinois RPS. We find that local, lower capacity factor wind sites are the lowest cost option for meeting the Illinois RPS if new long distance transmission is required to access distant, higher capacity factor wind resources. If higher capacity wind sites can be connected to the existing grid at minimal cost, in many cases they will have lower costs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Hand hygiene noncompliance is a major cause of nosocomial infection. Nosocomial infection cost data exist, but the effect of hand hygiene noncompliance is unknown. OBJECTIVE: To estimate methicillin-resistant Staphylococcus aureus (MRSA)-related cost of an incident of hand hygiene noncompliance by a healthcare worker during patient care. DESIGN: Two models were created to simulate sequential patient contacts by a hand hygiene-noncompliant healthcare worker. Model 1 involved encounters with patients of unknown MRSA status. Model 2 involved an encounter with an MRSA-colonized patient followed by an encounter with a patient of unknown MRSA status. The probability of new MRSA infection for the second patient was calculated using published data. A simulation of 1 million noncompliant events was performed. Total costs of resulting infections were aggregated and amortized over all events. SETTING: Duke University Medical Center, a 750-bed tertiary medical center in Durham, North Carolina. RESULTS: Model 1 was associated with 42 MRSA infections (infection rate, 0.0042%). Mean infection cost was $47,092 (95% confidence interval [CI], $26,040-$68,146); mean cost per noncompliant event was $1.98 (95% CI, $0.91-$3.04). Model 2 was associated with 980 MRSA infections (0.098%). Mean infection cost was $53,598 (95% CI, $50,098-$57,097); mean cost per noncompliant event was $52.53 (95% CI, $47.73-$57.32). A 200-bed hospital incurs $1,779,283 in annual MRSA infection-related expenses attributable to hand hygiene noncompliance. A 1.0% increase in hand hygiene compliance resulted in annual savings of $39,650 to a 200-bed hospital. CONCLUSIONS: Hand hygiene noncompliance is associated with significant attributable hospital costs. Minimal improvements in compliance lead to substantial savings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research and development costs of 93 randomly selected new chemical entities (NCEs) were obtained from a survey of 12 U.S.-owned pharmaceutical firms. These data were used to estimate the pre-tax average cost of new drug development. The costs of abandoned NCEs were linked to the costs of NCEs that obtained marketing approval. For base case parameter values, the estimated out-of-pocket cost per approved NCE is $114 million (1987 dollars). Capitalizing out-of-pocket costs to the point of marketing approval at a 9% discount rate yielded an average cost estimate of $231 million (1987 dollars).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The costs of developing the types of new drugs that have been pursued by traditional pharmaceutical firms have been estimated in a number of studies. However, similar analyses have not been published on the costs of developing the types of molecules on which biotech firms have focused. This study represents a first attempt to get a sense for the magnitude of the R&D costs associated with the discovery and development of new therapeutic biopharmaceuticals (specifically, recombinant proteins and monoclonal antibodies [mAbs]). We utilize drug-specific data on cash outlays, development times, and success in obtaining regulatory marketing approval to estimate the average pre-tax R&D resource cost for biopharmaceuticals up to the point of initial US marketing approval (in year 2005 dollars). We found average out-of-pocket (cash outlay) cost estimates per approved biopharmaceutical of $198 million, $361 million, and $559 million for the preclinical period, the clinical period, and in total, respectively. Including the time costs associated with biopharmaceutical R&D, we found average capitalized cost estimates per approved biopharmaceutical of $615 million, $626 million, and $1241 million for the preclinical period, the clinical period, and in total, respectively. Adjusting previously published estimates of R&D costs for traditional pharmaceutical firms by using past growth rates for pharmaceutical company costs to correspond to the more recent period to which our biopharmaceutical data apply, we found that total out-of-pocket cost per approved biopharmaceutical was somewhat lower than for the pharmaceutical company data ($559 million vs $672 million). However, estimated total capitalized cost per approved new molecule was nearly the same for biopharmaceuticals as for the adjusted pharmaceutical company data ($1241 million versus $1318 million). The results should be viewed with some caution for now given a limited number of biopharmaceutical molecules with data on cash outlays, different therapeutic class distributions for biopharmaceuticals and for pharmaceutical company drugs, and uncertainty about whether recent growth rates in pharmaceutical company costs are different from immediate past growth rates. Copyright © 2007 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

While numerous studies find that deep-saline sandstone aquifers in the United States could store many decades worth of the nation's current annual CO 2 emissions, the likely cost of this storage (i.e. the cost of storage only and not capture and transport costs) has been harder to constrain. We use publicly available data of key reservoir properties to produce geo-referenced rasters of estimated storage capacity and cost for regions within 15 deep-saline sandstone aquifers in the United States. The rasters reveal the reservoir quality of these aquifers to be so variable that the cost estimates for storage span three orders of magnitude and average>$100/tonne CO 2. However, when the cost and corresponding capacity estimates in the rasters are assembled into a marginal abatement cost curve (MACC), we find that ~75% of the estimated storage capacity could be available for<$2/tonne. Furthermore, ~80% of the total estimated storage capacity in the rasters is concentrated within just two of the aquifers-the Frio Formation along the Texas Gulf Coast, and the Mt. Simon Formation in the Michigan Basin, which together make up only ~20% of the areas analyzed. While our assessment is not comprehensive, the results suggest there should be an abundance of low-cost storage for CO 2 in deep-saline aquifers, but a majority of this storage is likely to be concentrated within specific regions of a smaller number of these aquifers. © 2011 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Namibia is home to half the world’s remaining wild cheetahs and - provides critical habitat for lions, leopards, spotted and brown hyena and African Wild Dogs. Despite such ecological importance, only 5% of cheetah's, <1% of African Wild Dogs', and similar percentages of remaining habitat for other large carnivores exists on officially protected lands. As a result, human/carnivore conflict is a large problem on private lands, where 60% of surveyed farmers will shoot any large carnivore on sight. This project explores building a carnivore rapid response team equipped to mitigate human/carnivore conflict through researching the financial costs of such an endeavor, with an eye on capitalizing potential benefits to all 6 Namibian large carnivore species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Histopathology is the clinical standard for tissue diagnosis. However, histopathology has several limitations including that it requires tissue processing, which can take 30 minutes or more, and requires a highly trained pathologist to diagnose the tissue. Additionally, the diagnosis is qualitative, and the lack of quantitation leads to possible observer-specific diagnosis. Taken together, it is difficult to diagnose tissue at the point of care using histopathology.

Several clinical situations could benefit from more rapid and automated histological processing, which could reduce the time and the number of steps required between obtaining a fresh tissue specimen and rendering a diagnosis. For example, there is need for rapid detection of residual cancer on the surface of tumor resection specimens during excisional surgeries, which is known as intraoperative tumor margin assessment. Additionally, rapid assessment of biopsy specimens at the point-of-care could enable clinicians to confirm that a suspicious lesion is successfully sampled, thus preventing an unnecessary repeat biopsy procedure. Rapid and low cost histological processing could also be potentially useful in settings lacking the human resources and equipment necessary to perform standard histologic assessment. Lastly, automated interpretation of tissue samples could potentially reduce inter-observer error, particularly in the diagnosis of borderline lesions.

To address these needs, high quality microscopic images of the tissue must be obtained in rapid timeframes, in order for a pathologic assessment to be useful for guiding the intervention. Optical microscopy is a powerful technique to obtain high-resolution images of tissue morphology in real-time at the point of care, without the need for tissue processing. In particular, a number of groups have combined fluorescence microscopy with vital fluorescent stains to visualize micro-anatomical features of thick (i.e. unsectioned or unprocessed) tissue. However, robust methods for segmentation and quantitative analysis of heterogeneous images are essential to enable automated diagnosis. Thus, the goal of this work was to obtain high resolution imaging of tissue morphology through employing fluorescence microscopy and vital fluorescent stains and to develop a quantitative strategy to segment and quantify tissue features in heterogeneous images, such as nuclei and the surrounding stroma, which will enable automated diagnosis of thick tissues.

To achieve these goals, three specific aims were proposed. The first aim was to develop an image processing method that can differentiate nuclei from background tissue heterogeneity and enable automated diagnosis of thick tissue at the point of care. A computational technique called sparse component analysis (SCA) was adapted to isolate features of interest, such as nuclei, from the background. SCA has been used previously in the image processing community for image compression, enhancement, and restoration, but has never been applied to separate distinct tissue types in a heterogeneous image. In combination with a high resolution fluorescence microendoscope (HRME) and a contrast agent acriflavine, the utility of this technique was demonstrated through imaging preclinical sarcoma tumor margins. Acriflavine localizes to the nuclei of cells where it reversibly associates with RNA and DNA. Additionally, acriflavine shows some affinity for collagen and muscle. SCA was adapted to isolate acriflavine positive features or APFs (which correspond to RNA and DNA) from background tissue heterogeneity. The circle transform (CT) was applied to the SCA output to quantify the size and density of overlapping APFs. The sensitivity of the SCA+CT approach to variations in APF size, density and background heterogeneity was demonstrated through simulations. Specifically, SCA+CT achieved the lowest errors for higher contrast ratios and larger APF sizes. When applied to tissue images of excised sarcoma margins, SCA+CT correctly isolated APFs and showed consistently increased density in tumor and tumor + muscle images compared to images containing muscle. Next, variables were quantified from images of resected primary sarcomas and used to optimize a multivariate model. The sensitivity and specificity for differentiating positive from negative ex vivo resected tumor margins was 82% and 75%. The utility of this approach was further tested by imaging the in vivo tumor cavities from 34 mice after resection of a sarcoma with local recurrence as a bench mark. When applied prospectively to images from the tumor cavity, the sensitivity and specificity for differentiating local recurrence was 78% and 82%. The results indicate that SCA+CT can accurately delineate APFs in heterogeneous tissue, which is essential to enable automated and rapid surveillance of tissue pathology.

Two primary challenges were identified in the work in aim 1. First, while SCA can be used to isolate features, such as APFs, from heterogeneous images, its performance is limited by the contrast between APFs and the background. Second, while it is feasible to create mosaics by scanning a sarcoma tumor bed in a mouse, which is on the order of 3-7 mm in any one dimension, it is not feasible to evaluate an entire human surgical margin. Thus, improvements to the microscopic imaging system were made to (1) improve image contrast through rejecting out-of-focus background fluorescence and to (2) increase the field of view (FOV) while maintaining the sub-cellular resolution needed for delineation of nuclei. To address these challenges, a technique called structured illumination microscopy (SIM) was employed in which the entire FOV is illuminated with a defined spatial pattern rather than scanning a focal spot, such as in confocal microscopy.

Thus, the second aim was to improve image contrast and increase the FOV through employing wide-field, non-contact structured illumination microscopy and optimize the segmentation algorithm for new imaging modality. Both image contrast and FOV were increased through the development of a wide-field fluorescence SIM system. Clear improvement in image contrast was seen in structured illumination images compared to uniform illumination images. Additionally, the FOV is over 13X larger than the fluorescence microendoscope used in aim 1. Initial segmentation results of SIM images revealed that SCA is unable to segment large numbers of APFs in the tumor images. Because the FOV of the SIM system is over 13X larger than the FOV of the fluorescence microendoscope, dense collections of APFs commonly seen in tumor images could no longer be sparsely represented, and the fundamental sparsity assumption associated with SCA was no longer met. Thus, an algorithm called maximally stable extremal regions (MSER) was investigated as an alternative approach for APF segmentation in SIM images. MSER was able to accurately segment large numbers of APFs in SIM images of tumor tissue. In addition to optimizing MSER for SIM image segmentation, an optimal frequency of the illumination pattern used in SIM was carefully selected because the image signal to noise ratio (SNR) is dependent on the grid frequency. A grid frequency of 31.7 mm-1 led to the highest SNR and lowest percent error associated with MSER segmentation.

Once MSER was optimized for SIM image segmentation and the optimal grid frequency was selected, a quantitative model was developed to diagnose mouse sarcoma tumor margins that were imaged ex vivo with SIM. Tumor margins were stained with acridine orange (AO) in aim 2 because AO was found to stain the sarcoma tissue more brightly than acriflavine. Both acriflavine and AO are intravital dyes, which have been shown to stain nuclei, skeletal muscle, and collagenous stroma. A tissue-type classification model was developed to differentiate localized regions (75x75 µm) of tumor from skeletal muscle and adipose tissue based on the MSER segmentation output. Specifically, a logistic regression model was used to classify each localized region. The logistic regression model yielded an output in terms of probability (0-100%) that tumor was located within each 75x75 µm region. The model performance was tested using a receiver operator characteristic (ROC) curve analysis that revealed 77% sensitivity and 81% specificity. For margin classification, the whole margin image was divided into localized regions and this tissue-type classification model was applied. In a subset of 6 margins (3 negative, 3 positive), it was shown that with a tumor probability threshold of 50%, 8% of all regions from negative margins exceeded this threshold, while over 17% of all regions exceeded the threshold in the positive margins. Thus, 8% of regions in negative margins were considered false positives. These false positive regions are likely due to the high density of APFs present in normal tissues, which clearly demonstrates a challenge in implementing this automatic algorithm based on AO staining alone.

Thus, the third aim was to improve the specificity of the diagnostic model through leveraging other sources of contrast. Modifications were made to the SIM system to enable fluorescence imaging at a variety of wavelengths. Specifically, the SIM system was modified to enabling imaging of red fluorescent protein (RFP) expressing sarcomas, which were used to delineate the location of tumor cells within each image. Initial analysis of AO stained panels confirmed that there was room for improvement in tumor detection, particularly in regards to false positive regions that were negative for RFP. One approach for improving the specificity of the diagnostic model was to investigate using a fluorophore that was more specific to staining tumor. Specifically, tetracycline was selected because it appeared to specifically stain freshly excised tumor tissue in a matter of minutes, and was non-toxic and stable in solution. Results indicated that tetracycline staining has promise for increasing the specificity of tumor detection in SIM images of a preclinical sarcoma model and further investigation is warranted.

In conclusion, this work presents the development of a combination of tools that is capable of automated segmentation and quantification of micro-anatomical images of thick tissue. When compared to the fluorescence microendoscope, wide-field multispectral fluorescence SIM imaging provided improved image contrast, a larger FOV with comparable resolution, and the ability to image a variety of fluorophores. MSER was an appropriate and rapid approach to segment dense collections of APFs from wide-field SIM images. Variables that reflect the morphology of the tissue, such as the density, size, and shape of nuclei and nucleoli, can be used to automatically diagnose SIM images. The clinical utility of SIM imaging and MSER segmentation to detect microscopic residual disease has been demonstrated by imaging excised preclinical sarcoma margins. Ultimately, this work demonstrates that fluorescence imaging of tissue micro-anatomy combined with a specialized algorithm for delineation and quantification of features is a means for rapid, non-destructive and automated detection of microscopic disease, which could improve cancer management in a variety of clinical scenarios.