2 resultados para Test Template Framework

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Testing for differences within data sets is an important issue across various applications. Our work is primarily motivated by the analysis of microbiomial composition, which has been increasingly relevant and important with the rise of DNA sequencing. We first review classical frequentist tests that are commonly used in tackling such problems. We then propose a Bayesian Dirichlet-multinomial framework for modeling the metagenomic data and for testing underlying differences between the samples. A parametric Dirichlet-multinomial model uses an intuitive hierarchical structure that allows for flexibility in characterizing both the within-group variation and the cross-group difference and provides very interpretable parameters. A computational method for evaluating the marginal likelihoods under the null and alternative hypotheses is also given. Through simulations, we show that our Bayesian model performs competitively against frequentist counterparts. We illustrate the method through analyzing metagenomic applications using the Human Microbiome Project data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An abundance of research in the social sciences has demonstrated a persistent bias against nonnative English speakers (Giles & Billings, 2004; Gluszek & Dovidio, 2010). Yet, organizational scholars have only begun to investigate the underlying mechanisms that drive the bias against nonnative speakers and subsequently design interventions to mitigate these biases. In this dissertation, I offer an integrative model to organize past explanations for accent-based bias into a coherent framework, and posit that nonnative accents elicit social perceptions that have implications at the personal, relational, and group level. I also seek to complement the existing emphasis on main effects of accents, which focuses on the general tendency to discriminate against those with accents, by examining moderators that shed light on the conditions under which accent-based bias is most likely to occur. Specifically, I explore the idea that people’s beliefs about the controllability of accents can moderate their evaluations toward nonnative speakers, such that those who believe that accents can be controlled are more likely to demonstrate a bias against nonnative speakers. I empirically test my theoretical model in three studies in the context of entrepreneurial funding decisions. Results generally supported the proposed model. By examining the micro foundations of accent-based bias, the ideas explored in this dissertation set the stage for future research in an increasingly multilingual world.