1 resultado para Technology Learning
em Duke University
Filtro por publicador
- JISC Information Environment Repository (4)
- Repository Napier (1)
- ABACUS. Repositorio de Producción Científica - Universidad Europea (2)
- Aberdeen University (1)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Applied Math and Science Education Repository - Washington - USA (5)
- Archive of European Integration (2)
- Aston University Research Archive (48)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (9)
- Brock University, Canada (9)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (20)
- CentAUR: Central Archive University of Reading - UK (45)
- Cochin University of Science & Technology (CUSAT), India (16)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (79)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (9)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- Digital Commons @ DU | University of Denver Research (2)
- Digital Commons @ Winthrop University (1)
- Digital Commons at Florida International University (19)
- Digital Peer Publishing (27)
- DigitalCommons@The Texas Medical Center (8)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (23)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Escola Superior de Educação de Paula Frassinetti (1)
- Fachlicher Dokumentenserver Paedagogik/Erziehungswissenschaften (9)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Galway Mayo Institute of Technology, Ireland (3)
- Institute of Public Health in Ireland, Ireland (1)
- Instituto Politécnico de Santarém (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (32)
- Ministerio de Cultura, Spain (9)
- National Center for Biotechnology Information - NCBI (1)
- Open Access Repository of Association for Learning Technology (ALT) (11)
- Open University Netherlands (9)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Portal do Conhecimento - Ministerio do Ensino Superior Ciencia e Inovacao, Cape Verde (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (7)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Aberto da Universidade Aberta de Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (3)
- Repositório Científico da Escola Superior de Enfermagem de Coimbra (1)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório Científico do Instituto Politécnico de Santarém - Portugal (1)
- Repositório do ISCTE - Instituto Universitário de Lisboa (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositorio Institucional de la Universidad de Málaga (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (10)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (6)
- Scielo Saúde Pública - SP (2)
- Scientific Open-access Literature Archive and Repository (1)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (1)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (2)
- Universidad Politécnica de Madrid (36)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade do Minho (4)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (2)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (11)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (3)
- University of Canberra Research Repository - Australia (1)
- University of Michigan (3)
- University of Queensland eSpace - Australia (72)
- University of Southampton, United Kingdom (9)
- University of Washington (1)
- WestminsterResearch - UK (6)
- Worcester Research and Publications - Worcester Research and Publications - UK (19)
Resumo:
Constant technology advances have caused data explosion in recent years. Accord- ingly modern statistical and machine learning methods must be adapted to deal with complex and heterogeneous data types. This phenomenon is particularly true for an- alyzing biological data. For example DNA sequence data can be viewed as categorical variables with each nucleotide taking four different categories. The gene expression data, depending on the quantitative technology, could be continuous numbers or counts. With the advancement of high-throughput technology, the abundance of such data becomes unprecedentedly rich. Therefore efficient statistical approaches are crucial in this big data era.
Previous statistical methods for big data often aim to find low dimensional struc- tures in the observed data. For example in a factor analysis model a latent Gaussian distributed multivariate vector is assumed. With this assumption a factor model produces a low rank estimation of the covariance of the observed variables. Another example is the latent Dirichlet allocation model for documents. The mixture pro- portions of topics, represented by a Dirichlet distributed variable, is assumed. This dissertation proposes several novel extensions to the previous statistical methods that are developed to address challenges in big data. Those novel methods are applied in multiple real world applications including construction of condition specific gene co-expression networks, estimating shared topics among newsgroups, analysis of pro- moter sequences, analysis of political-economics risk data and estimating population structure from genotype data.