6 resultados para Team Working
em Duke University
Child work and labour among orphaned and abandoned children in five low and middle income countries.
Resumo:
BACKGROUND: The care and protection of the estimated 143,000,000 orphaned and abandoned children (OAC) worldwide is of great importance to global policy makers and child service providers in low and middle income countries (LMICs), yet little is known about rates of child labour among OAC, what child and caregiver characteristics predict child engagement in work and labour, or when such work infers with schooling. This study examines rates and correlates of child labour among OAC and associations of child labour with schooling in a cohort of OAC in 5 LMICs. METHODS: The Positive Outcomes for Orphans (POFO) study employed a two-stage random sampling survey methodology to identify 1480 single and double orphans and children abandoned by both parents ages 6-12 living in family settings in five LMICs: Cambodia, Ethiopia, India, Kenya, and Tanzania. Regression models examined child and caregiver associations with: any work versus no work; and with working <21, 21-27, and 28+ hours during the past week, and child labour (UNICEF definition). RESULTS: The majority of OAC (60.7%) engaged in work during the past week, and of those who worked, 17.8% (10.5% of the total sample) worked 28 or more hours. More than one-fifth (21.9%; 13% of the total sample) met UNICEF's child labour definition. Female OAC and those in good health had increased odds of working. OAC living in rural areas, lower household wealth and caregivers not earning an income were associated with increased child labour. Child labour, but not working fewer than 28 hours per week, was associated with decreased school attendance. CONCLUSIONS: One in seven OAC in this study were reported to be engaged in child labour. Policy makers and social service providers need to pay close attention to the demands being placed on female OAC, particularly in rural areas and poor households with limited income sources. Programs to promote OAC school attendance may need to focus on the needs of families as well as the OAC.
Resumo:
New applications of genetic data to questions of historical biogeography have revolutionized our understanding of how organisms have come to occupy their present distributions. Phylogenetic methods in combination with divergence time estimation can reveal biogeographical centres of origin, differentiate between hypotheses of vicariance and dispersal, and reveal the directionality of dispersal events. Despite their power, however, phylogenetic methods can sometimes yield patterns that are compatible with multiple, equally well-supported biogeographical hypotheses. In such cases, additional approaches must be integrated to differentiate among conflicting dispersal hypotheses. Here, we use a synthetic approach that draws upon the analytical strengths of coalescent and population genetic methods to augment phylogenetic analyses in order to assess the biogeographical history of Madagascar's Triaenops bats (Chiroptera: Hipposideridae). Phylogenetic analyses of mitochondrial DNA sequence data for Malagasy and east African Triaenops reveal a pattern that equally supports two competing hypotheses. While the phylogeny cannot determine whether Africa or Madagascar was the centre of origin for the species investigated, it serves as the essential backbone for the application of coalescent and population genetic methods. From the application of these methods, we conclude that a hypothesis of two independent but unidirectional dispersal events from Africa to Madagascar is best supported by the data.
Resumo:
The spacing effect in list learning occurs because identical massed items suffer encoding deficits and because spaced items benefit from retrieval and increased time in working memory. Requiring the retrieval of identical items produced a spacing effect for recall and recognition, both for intentional and incidental learning. Not requiring retrieval produced spacing only for intentional learning because intentional learning encourages retrieval. Once-presented words provided baselines for these effects. Next, massed and spaced word pairs were judged for matches on their first three letters, forcing retrieval. The words were not identical, so there was no encoding deficit. Retrieval could and did cause spacing only for the first word of each pair; time in working memory, only for the second.
Resumo:
All of us are taxed with juggling our inner mental lives with immediate external task demands. For many years, the temporary maintenance of internal information was considered to be handled by a dedicated working memory (WM) system. It has recently become increasingly clear, however, that such short-term internal activation interacts with attention focused on external stimuli. It is unclear, however, exactly why these two interact, at what level of processing, and to what degree. Because our internal maintenance and external attention processes co-occur with one another, the manner of their interaction has vast implications for functioning in daily life. The work described here has employed original experimental paradigms combining WM and attention task elements, functional magnetic resonance imaging (fMRI) to illuminate the associated neural processes, and transcranial magnetic stimulation (TMS) to clarify the causal substrates of attentional brain function. These studies have examined a mechanism that might explain why (and when) the content of WM can involuntarily capture visual attention. They have, furthermore, tested whether fundamental attentional selection processes operate within WM, and whether they are reciprocal with attention. Finally, they have illuminated the neural consequences of competing attentional demands. The findings indicate that WM shares representations, operating principles, and cognitive resources with externally-oriented attention.
Resumo:
PURPOSE: The readiness assurance process (RAP) of team-based learning (TBL) is an important element that ensures that students come prepared to learn. However, the RAP can use a significant amount of class time which could otherwise be used for application exercises. The authors administered the TBL-associated RAP in class or individual readiness assurance tests (iRATs) at home to compare medical student performance and learning preference for physiology content. METHODS: Using cross-over study design, the first year medical student TBL teams were divided into two groups. One group was administered iRATs and group readiness assurance tests (gRATs) consisting of physiology questions during scheduled class time. The other group was administered the same iRAT questions at home, and did not complete a gRAT. To compare effectiveness of the two administration methods, both groups completed the same 12-question physiology assessment during dedicated class time. Four weeks later, the entire process was repeated, with each group administered the RAP using the opposite method. RESULTS: The performance on the physiology assessment after at-home administration of the iRAT was equivalent to performance after traditional in-class administration of the RAP. In addition, a majority of students preferred the at-home method of administration and reported that the at-home method was more effective in helping them learn course content. CONCLUSION: The at-home administration of the iRAT proved effective. The at-home administration method is a promising alternative to conventional iRATs and gRATs with the goal of preserving valuable in-class time for TBL application exercises.
Resumo:
CONCLUSION Radiation dose reduction, while saving image quality could be easily implemented with this approach. Furthermore, the availability of a dosimetric data archive provides immediate feedbacks, related to the implemented optimization strategies. Background JCI Standards and European Legislation (EURATOM 59/2013) require the implementation of patient radiation protection programs in diagnostic radiology. Aim of this study is to demonstrate the possibility to reduce patients radiation exposure without decreasing image quality, through a multidisciplinary team (MT), which analyzes dosimetric data of diagnostic examinations. Evaluation Data from CT examinations performed with two different scanners (Siemens DefinitionTM and GE LightSpeed UltraTM) between November and December 2013 are considered. CT scanners are configured to automatically send images to DoseWatch© software, which is able to store output parameters (e.g. kVp, mAs, pitch ) and exposure data (e.g. CTDIvol, DLP, SSDE). Data are analyzed and discussed by a MT composed by Medical Physicists and Radiologists, to identify protocols which show critical dosimetric values, then suggest possible improvement actions to be implemented. Furthermore, the large amount of data available allows to monitor diagnostic protocols currently in use and to identify different statistic populations for each of them. Discussion We identified critical values of average CTDIvol for head and facial bones examinations (respectively 61.8 mGy, 151 scans; 61.6 mGy, 72 scans), performed with the GE LightSpeed CTTM. Statistic analysis allowed us to identify the presence of two different populations for head scan, one of which was only 10% of the total number of scans and corresponded to lower exposure values. The MT adopted this protocol as standard. Moreover, the constant output parameters monitoring allowed us to identify unusual values in facial bones exams, due to changes during maintenance service, which the team promptly suggested to correct. This resulted in a substantial dose saving in CTDIvol average values of approximately 15% and 50% for head and facial bones exams, respectively. Diagnostic image quality was deemed suitable for clinical use by radiologists.