5 resultados para Taxonomy, Ecommerce, Distributed Systems
em Duke University
Resumo:
Secure Access For Everyone (SAFE), is an integrated system for managing trust
using a logic-based declarative language. Logical trust systems authorize each
request by constructing a proof from a context---a set of authenticated logic
statements representing credentials and policies issued by various principals
in a networked system. A key barrier to practical use of logical trust systems
is the problem of managing proof contexts: identifying, validating, and
assembling the credentials and policies that are relevant to each trust
decision.
SAFE addresses this challenge by (i) proposing a distributed authenticated data
repository for storing the credentials and policies; (ii) introducing a
programmable credential discovery and assembly layer that generates the
appropriate tailored context for a given request. The authenticated data
repository is built upon a scalable key-value store with its contents named by
secure identifiers and certified by the issuing principal. The SAFE language
provides scripting primitives to generate and organize logic sets representing
credentials and policies, materialize the logic sets as certificates, and link
them to reflect delegation patterns in the application. The authorizer fetches
the logic sets on demand, then validates and caches them locally for further
use. Upon each request, the authorizer constructs the tailored proof context
and provides it to the SAFE inference for certified validation.
Delegation-driven credential linking with certified data distribution provides
flexible and dynamic policy control enabling security and trust infrastructure
to be agile, while addressing the perennial problems related to today's
certificate infrastructure: automated credential discovery, scalable
revocation, and issuing credentials without relying on centralized authority.
We envision SAFE as a new foundation for building secure network systems. We
used SAFE to build secure services based on case studies drawn from practice:
(i) a secure name service resolver similar to DNS that resolves a name across
multi-domain federated systems; (ii) a secure proxy shim to delegate access
control decisions in a key-value store; (iii) an authorization module for a
networked infrastructure-as-a-service system with a federated trust structure
(NSF GENI initiative); and (iv) a secure cooperative data analytics service
that adheres to individual secrecy constraints while disclosing the data. We
present empirical evaluation based on these case studies and demonstrate that
SAFE supports a wide range of applications with low overhead.
Resumo:
Distributed Computing frameworks belong to a class of programming models that allow developers to
launch workloads on large clusters of machines. Due to the dramatic increase in the volume of
data gathered by ubiquitous computing devices, data analytic workloads have become a common
case among distributed computing applications, making Data Science an entire field of
Computer Science. We argue that Data Scientist's concern lays in three main components: a dataset,
a sequence of operations they wish to apply on this dataset, and some constraint they may have
related to their work (performances, QoS, budget, etc). However, it is actually extremely
difficult, without domain expertise, to perform data science. One need to select the right amount
and type of resources, pick up a framework, and configure it. Also, users are often running their
application in shared environments, ruled by schedulers expecting them to specify precisely their resource
needs. Inherent to the distributed and concurrent nature of the cited frameworks, monitoring and
profiling are hard, high dimensional problems that block users from making the right
configuration choices and determining the right amount of resources they need. Paradoxically, the
system is gathering a large amount of monitoring data at runtime, which remains unused.
In the ideal abstraction we envision for data scientists, the system is adaptive, able to exploit
monitoring data to learn about workloads, and process user requests into a tailored execution
context. In this work, we study different techniques that have been used to make steps toward
such system awareness, and explore a new way to do so by implementing machine learning
techniques to recommend a specific subset of system configurations for Apache Spark applications.
Furthermore, we present an in depth study of Apache Spark executors configuration, which highlight
the complexity in choosing the best one for a given workload.
Resumo:
The beta-adrenergic receptor kinase (beta ARK) phosphorylates the agonist-occupied beta-adrenergic receptor to promote rapid receptor uncoupling from Gs, thereby attenuating adenylyl cyclase activity. Beta ARK-mediated receptor desensitization may reflect a general molecular mechanism operative on many G-protein-coupled receptor systems and, particularly, synaptic neurotransmitter receptors. Two distinct cDNAs encoding beta ARK isozymes were isolated from rat brain and sequenced. The regional and cellular distributions of these two gene products, termed beta ARK1 and beta ARK2, were determined in brain by in situ hybridization and by immunohistochemistry at the light and electron microscopic levels. The beta ARK isozymes were found to be expressed primarily in neurons distributed throughout the CNS. Ultrastructurally, beta ARK1 and beta ARK2 immunoreactivities were present both in association with postsynaptic densities and, presynaptically, with axon terminals. The beta ARK isozymes have a regional and subcellular distribution consistent with a general role in the desensitization of synaptic receptors.
Resumo:
To investigate the neural systems that contribute to the formation of complex, self-relevant emotional memories, dedicated fans of rival college basketball teams watched a competitive game while undergoing functional magnetic resonance imaging (fMRI). During a subsequent recognition memory task, participants were shown video clips depicting plays of the game, stemming either from previously-viewed game segments (targets) or from non-viewed portions of the same game (foils). After an old-new judgment, participants provided emotional valence and intensity ratings of the clips. A data driven approach was first used to decompose the fMRI signal acquired during free viewing of the game into spatially independent components. Correlations were then calculated between the identified components and post-scanning emotion ratings for successfully encoded targets. Two components were correlated with intensity ratings, including temporal lobe regions implicated in memory and emotional functions, such as the hippocampus and amygdala, as well as a midline fronto-cingulo-parietal network implicated in social cognition and self-relevant processing. These data were supported by a general linear model analysis, which revealed additional valence effects in fronto-striatal-insular regions when plays were divided into positive and negative events according to the fan's perspective. Overall, these findings contribute to our understanding of how emotional factors impact distributed neural systems to successfully encode dynamic, personally-relevant event sequences.
Resumo:
BACKGROUND: A hierarchical taxonomy of organisms is a prerequisite for semantic integration of biodiversity data. Ideally, there would be a single, expansive, authoritative taxonomy that includes extinct and extant taxa, information on synonyms and common names, and monophyletic supraspecific taxa that reflect our current understanding of phylogenetic relationships. DESCRIPTION: As a step towards development of such a resource, and to enable large-scale integration of phenotypic data across vertebrates, we created the Vertebrate Taxonomy Ontology (VTO), a semantically defined taxonomic resource derived from the integration of existing taxonomic compilations, and freely distributed under a Creative Commons Zero (CC0) public domain waiver. The VTO includes both extant and extinct vertebrates and currently contains 106,947 taxonomic terms, 22 taxonomic ranks, 104,736 synonyms, and 162,400 cross-references to other taxonomic resources. Key challenges in constructing the VTO included (1) extracting and merging names, synonyms, and identifiers from heterogeneous sources; (2) structuring hierarchies of terms based on evolutionary relationships and the principle of monophyly; and (3) automating this process as much as possible to accommodate updates in source taxonomies. CONCLUSIONS: The VTO is the primary source of taxonomic information used by the Phenoscape Knowledgebase (http://phenoscape.org/), which integrates genetic and evolutionary phenotype data across both model and non-model vertebrates. The VTO is useful for inferring phenotypic changes on the vertebrate tree of life, which enables queries for candidate genes for various episodes in vertebrate evolution.