2 resultados para Tar
em Duke University
Resumo:
BACKGROUND: Ipsilateral hindfoot arthrodesis in combination with total ankle replacement (TAR) may diminish functional outcome and prosthesis survivorship compared to isolated TAR. We compared the outcome of isolated TAR to outcomes of TAR with ipsilateral hindfoot arthrodesis. METHODS: In a consecutive series of 404 primary TARs in 396 patients, 70 patients (17.3%) had a hindfoot fusion before, after, or at the time of TAR; the majority had either an isolated subtalar arthrodesis (n = 43, 62%) or triple arthrodesis (n = 15, 21%). The remaining 334 isolated TARs served as the control group. Mean patient follow-up was 3.2 years (range, 24-72 months). RESULTS: The SF-36 total, AOFAS Hindfoot-Ankle pain subscale, Foot and Ankle Disability Index, and Short Musculoskeletal Function Assessment scores were significantly improved from preoperative measures, with no significant differences between the hindfoot arthrodesis and control groups. The AOFAS Hindfoot-Ankle total, function, and alignment scores were significantly improved for both groups, albeit the control group demonstrated significantly higher scores in all 3 scales. Furthermore, the control group demonstrated a significantly greater improvement in VAS pain score compared to the hindfoot arthrodesis group. Walking speed, sit-to-stand time, and 4-square step test time were significantly improved for both groups at each postoperative time point; however, the hindfoot arthrodesis group completed these tests significantly slower than the control group. There was no significant difference in terms of talar component subsidence between the fusion (2.6 mm) and control groups (2.0 mm). The failure rate in the hindfoot fusion group (10.0%) was significantly higher than that in the control group (2.4%; p < 0.05). CONCLUSION: To our knowledge, this study represents the first series evaluating the clinical outcome of TARs performed with and without hindfoot fusion using implants available in the United States. At follow-up of 3.2 years, TAR performed with ipsilateral hindfoot arthrodesis resulted in significant improvements in pain and functional outcome; in contrast to prior studies, however, overall outcome was inferior to that of isolated TAR. LEVEL OF EVIDENCE: Level II, prospective comparative series.
Resumo:
Biological macromolecules can rearrange interdomain orientations when binding to various partners. Interdomain dynamics serve as a molecular mechanism to guide the transitions between orientations. However, our understanding of interdomain dynamics is limited because a useful description of interdomain motions requires an estimate of the probabilities of interdomain conformations, increasing complexity of the problem.
Staphylococcal protein A (SpA) has five tandem protein-binding domains and four interdomain linkers. The domains enable Staphylococcus aureus to evade the host immune system by binding to multiple host proteins including antibodies. Here, I present a study of the interdomain motions of two adjacent domains in SpA. NMR spin relaxation experiments identified a 6-residue flexible interdomain linker and interdomain motions. To quantify the anisotropy of the distribution of interdomain orientations, we measured residual dipolar couplings (RDCs) from the two domains with multiple alignments. The N-terminal domain was directly aligned by a lanthanide ion and not influenced by interdomain motions, so it acted as a reference frame to achieve motional decoupling. We also applied {\it de novo} methods to extract spatial dynamic information from RDCs and represent interdomain motions as a continuous distribution on the 3D rotational space. Significant anisotropy was observed in the distribution, indicating the motion populates some interdomain orientations more than others. Statistical thermodynamic analysis of the observed orientational distribution suggests that it is among the energetically most favorable orientational distributions for binding to antibodies. Thus, the affinity is enhanced by a pre-posed distribution of interdomain orientations while maintaining the flexibility required for function.
The protocol described above can be applied to other biological systems in general. Protein molecule calmodulin and RNA molecule trans-activation response element (TAR) also have intensive interdomain motions with relative small intradomain dynamics. Their interdomain motions were studied using our method based on published RDC data. Our results were consistent with literature results in general. The differences could be due to previous studies' use of physical models, which contain assumptions about potential energy and thus introduced non-experimental information into the interpretations.