8 resultados para TRANSVERSE

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tissue engineering of various musculoskeletal or cardiovascular tissues requires scaffolds with controllable mechanical anisotropy. However, native tissues also exhibit significant inhomogeneity in their mechanical properties, and the principal axes of anisotropy may vary with site or depth from the tissue surface. Thus, techniques to produce multilayered biomaterial scaffolds with controllable anisotropy may provide improved biomimetic properties for functional tissue replacements. In this study, poly(ε-caprolactone) scaffolds were electrospun onto a collecting electrode that was partially covered by rectangular or square shaped insulating masks. The use of a rectangular mask resulted in aligned scaffolds that were significantly stiffer in tension in the axial direction than the transverse direction at 0 strain (22.9 ± 1.3 MPa axial, 16.1 ± 0.9 MPa transverse), and at 0.1 strain (4.8 ± 0.3 MPa axial, 3.5 ± 0.2 MPa transverse). The unaligned scaffolds, produced using a square mask, did not show this anisotropy, with similar stiffness in the axial and transverse directions at 0 strain (19.7 ± 1.4 MPa axial, 20.8 ± 1.3 MPa transverse) and 0.1 strain (4.4 ± 0.2 MPa axial, 4.6 ± 0.3 MPa, transverse). Aligned scaffolds also induced alignment of adipose stem cells near the expected axis on aligned scaffolds (0.015 ± 0.056 rad), while on the unaligned scaffolds, their orientation showed more variation and was not along the expected axis (1.005 ± 0.225 rad). This method provides a novel means of creating multilayered electrospun scaffolds with controlled anisotropy for each layer, potentially providing a means to mimic the complex mechanical properties of various native tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first calculation of triangular flow ν3 in Au+Au collisions at √sNN = 200A GeV from an event-by-event (3 + 1) d transport+hydrodynamics hybrid approach is presented. As a response to the initial triangularity Ie{cyrillic, ukrainian}3 of the collision zone, ν3 is computed in a similar way to the standard event-plane analysis for elliptic flow ν2. It is found that the triangular flow exhibits weak centrality dependence and is roughly equal to elliptic flow in most central collisions. We also explore the transverse momentum and rapidity dependence of ν2 and ν3 for charged particles as well as identified particles. We conclude that an event-by-event treatment of the ideal hydrodynamic evolution startingwith realistic initial conditions generates the main features expected for triangular flow. © 2010 The American Physical Society.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report a new nonlinear optical process that occurs in a cloud of cold atoms at low-light-levels when the incident optical fields simultaneously polarize, cool, and spatially-organize the atoms. We observe an extremely large effective fifth-order nonlinear susceptibility of χ(⁵) = 7.6 × 10⁻¹⁵ (m/V)⁴, which results in efficient Bragg scattering via six-wave mixing, slow group velocities (∼ c/10⁵), and enhanced atomic coherence times (> 100 μs). In addition, this process is particularly sensitive to the atomic temperatures, and provides a new tool for in-situ monitoring of the atomic momentum distribution in an optical lattice. For sufficiently large light-matter couplings, we observe an optical instability for intensities as low as ∼ 1 mW/cm² in which new, intense beams of light are generated and result in the formation of controllable transverse optical patterns.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Heart failure is characterized by abnormalities in beta-adrenergic receptor (betaAR) signaling, including increased level of myocardial betaAR kinase 1 (betaARK1). Our previous studies have shown that inhibition of betaARK1 with the use of the Gbetagamma sequestering peptide of betaARK1 (betaARKct) can prevent cardiac dysfunction in models of heart failure. Because inhibition of betaARK activity is pivotal for amelioration of cardiac dysfunction, we investigated whether the level of betaARK1 inhibition correlates with the degree of heart failure. METHODS AND RESULTS: Transgenic (TG) mice with varying degrees of cardiac-specific expression of betaARKct peptide underwent transverse aortic constriction (TAC) for 12 weeks. Cardiac function was assessed by serial echocardiography in conscious mice, and the level of myocardial betaARKct protein was quantified at termination of the study. TG mice showed a positive linear relationship between the level of betaARKct protein expression and fractional shortening at 12 weeks after TAC. TG mice with low betaARKct expression developed severe heart failure, whereas mice with high betaARKct expression showed significantly less cardiac deterioration than wild-type (WT) mice. Importantly, mice with a high level of betaARKct expression had preserved isoproterenol-stimulated adenylyl cyclase activity and normal betaAR densities in the cardiac membranes. In contrast, mice with low expression of the transgene had marked abnormalities in betaAR function, similar to the WT mice. CONCLUSIONS: These data show that the level of betaARK1 inhibition determines the degree to which cardiac function can be preserved in response to pressure overload and has important therapeutic implications when betaARK1 inhibition is considered as a molecular target.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Increasing number of stretch-shortening contractions (SSCs) results in increased muscle injury. METHODS: Fischer Hybrid rats were acutely exposed to an increasing number of SSCs in vivo using a custom-designed dynamometer. Magnetic resonance imaging (MRI) imaging was conducted 72 hours after exposure when rats were infused with Prohance and imaged using a 7T rodent MRI system (GE Epic 12.0). Images were acquired in the transverse plane with typically 60 total slices acquired covering the entire length of the hind legs. Rats were euthanized after MRI, the lower limbs removed, and tibialis anterior muscles were prepared for histology and quantified stereology. RESULTS: Stereological analyses showed myofiber degeneration, and cellular infiltrates significantly increased following 70 and 150 SSC exposure compared to controls. MRI images revealed that the percent affected area significantly increased with exposure in all SSC groups in a graded fashion. Signal intensity also significantly increased with increasing SSC repetitions. DISCUSSION: These results suggest that contrast-enhanced MRI has the sensitivity to differentiate specific degrees of skeletal muscle strain injury, and imaging data are specifically representative of cellular histopathology quantified via stereological analyses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four pigs, three with focal infarctions in the apical intraventricular septum (IVS) and/or left ventricular free wall (LVFW), were imaged with an intracardiac echocardiography (ICE) transducer. Custom beam sequences were used to excite the myocardium with focused acoustic radiation force (ARF) impulses and image the subsequent tissue response. Tissue displacement in response to the ARF excitation was calculated with a phase-based estimator, and transverse wave magnitude and velocity were each estimated at every depth. The excitation sequence was repeated rapidly, either in the same location to generate 40 Hz M-modes at a single steering angle, or with a modulated steering angle to synthesize 2-D displacement magnitude and shear wave velocity images at 17 points in the cardiac cycle. Both types of images were acquired from various views in the right and left ventricles, in and out of infarcted regions. In all animals, acoustic radiation force impulse (ARFI) and shear wave elasticity imaging (SWEI) estimates indicated diastolic relaxation and systolic contraction in noninfarcted tissues. The M-mode sequences showed high beat-to-beat spatio-temporal repeatability of the measurements for each imaging plane. In views of noninfarcted tissue in the diseased animals, no significant elastic remodeling was indicated when compared with the control. Where available, views of infarcted tissue were compared with similar views from the control animal. In views of the LVFW, the infarcted tissue presented as stiff and non-contractile compared with the control. In a view of the IVS, no significant difference was seen between infarcted and healthy tissue, whereas in another view, a heterogeneous infarction was seen to be presenting itself as non-contractile in systole.