5 resultados para TRANSIT TIMING OBSERVATIONS

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The long-term soil carbon dynamics may be approximated by networks of linear compartments, permitting theoretical analysis of transit time (i.e., the total time spent by a molecule in the system) and age (the time elapsed since the molecule entered the system) distributions. We compute and compare these distributions for different network. configurations, ranging from the simple individual compartment, to series and parallel linear compartments, feedback systems, and models assuming a continuous distribution of decay constants. We also derive the transit time and age distributions of some complex, widely used soil carbon models (the compartmental models CENTURY and Rothamsted, and the continuous-quality Q-Model), and discuss them in the context of long-term carbon sequestration in soils. We show how complex models including feedback loops and slow compartments have distributions with heavier tails than simpler models. Power law tails emerge when using continuous-quality models, indicating long retention times for an important fraction of soil carbon. The responsiveness of the soil system to changes in decay constants due to altered climatic conditions or plant species composition is found to be stronger when all compartments respond equally to the environmental change, and when the slower compartments are more sensitive than the faster ones or lose more carbon through microbial respiration. Copyright 2009 by the American Geophysical Union.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Primary care providers' suboptimal recognition of the severity of chronic kidney disease (CKD) may contribute to untimely referrals of patients with CKD to subspecialty care. It is unknown whether U.S. primary care physicians' use of estimated glomerular filtration rate (eGFR) rather than serum creatinine to estimate CKD severity could improve the timeliness of their subspecialty referral decisions. METHODS: We conducted a cross-sectional study of 154 United States primary care physicians to assess the effect of use of eGFR (versus creatinine) on the timing of their subspecialty referrals. Primary care physicians completed a questionnaire featuring questions regarding a hypothetical White or African American patient with progressing CKD. We asked primary care physicians to identify the serum creatinine and eGFR levels at which they would recommend patients like the hypothetical patient be referred for subspecialty evaluation. We assessed significant improvement in the timing [from eGFR < 30 to ≥ 30 mL/min/1.73m(2)) of their recommended referrals based on their use of creatinine versus eGFR. RESULTS: Primary care physicians recommended subspecialty referrals later (CKD more advanced) when using creatinine versus eGFR to assess kidney function [median eGFR 32 versus 55 mL/min/1.73m(2), p < 0.001]. Forty percent of primary care physicians significantly improved the timing of their referrals when basing their recommendations on eGFR. Improved timing occurred more frequently among primary care physicians practicing in academic (versus non-academic) practices or presented with White (versus African American) hypothetical patients [adjusted percentage(95% CI): 70% (45-87) versus 37% (reference) and 57% (39-73) versus 25% (reference), respectively, both p ≤ 0.01). CONCLUSIONS: Primary care physicians recommended subspecialty referrals earlier when using eGFR (versus creatinine) to assess kidney function. Enhanced use of eGFR by primary care physicians' could lead to more timely subspecialty care and improved clinical outcomes for patients with CKD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

© 2016 The Author(s).Mid-ocean ridges display tectonic segmentation defined by discontinuities of the axial zone, and geophysical and geochemical observations suggest segmentation of the underlying magmatic plumbing system. Here, observations of tectonic and magmatic segmentation at ridges spreading from fast to ultraslow rates are reviewed in light of influential concepts of ridge segmentation, including the notion of hierarchical segmentation, spreading cells and centralized v. multiple supply of mantle melts. The observations support the concept of quasi-regularly spaced principal magmatic segments, which are 30-50 km long on average at fast- to slow-spreading ridges and fed by melt accumulations in the shallow asthenosphere. Changes in ridge properties approaching or crossing transform faults are often comparable with those observed at smaller offsets, and even very small discontinuities can be major boundaries in ridge properties. Thus, hierarchical segmentation models that suggest large-scale transform fault-bounded segmentation arises from deeper level processes in the asthenosphere than the finer-scale segmentation are not generally supported. The boundaries between some but not all principal magmatic segments defined by ridge axis geophysical properties coincide with geochemical boundaries reflecting changes in source composition or melting processes. Where geochemical boundaries occur, they can coincide with discontinuities of a wide range of scales.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study examined the impact of the developmental timing of trauma exposure on posttraumatic stress disorder (PTSD) symptoms and psychosocial functioning in a large sample of community-dwelling older adults (N = 1,995). Specifically, we investigated whether the negative consequences of exposure to traumatic events were greater for traumas experienced during childhood, adolescence, young adulthood, midlife, or older adulthood. Each of these developmental periods is characterized by age-related changes in cognitive and social processes that may influence psychological adjustment following trauma exposure. Results revealed that older adults who experienced their currently most distressing traumatic event during childhood exhibited more severe symptoms of PTSD and lower subjective happiness compared with older adults who experienced their most distressing trauma after the transition to adulthood. Similar findings emerged for measures of social support and coping ability. The differential effects of childhood compared with later life traumas were not fully explained by differences in cumulative trauma exposure or by differences in the objective and subjective characteristics of the events. Our findings demonstrate the enduring nature of traumatic events encountered early in the life course and underscore the importance of examining the developmental context of trauma exposure in investigations of the long-term consequences of traumatic experiences.