3 resultados para TPS (Trust Problem Space)
em Duke University
Resumo:
Maps are a mainstay of visual, somatosensory, and motor coding in many species. However, auditory maps of space have not been reported in the primate brain. Instead, recent studies have suggested that sound location may be encoded via broadly responsive neurons whose firing rates vary roughly proportionately with sound azimuth. Within frontal space, maps and such rate codes involve different response patterns at the level of individual neurons. Maps consist of neurons exhibiting circumscribed receptive fields, whereas rate codes involve open-ended response patterns that peak in the periphery. This coding format discrepancy therefore poses a potential problem for brain regions responsible for representing both visual and auditory information. Here, we investigated the coding of auditory space in the primate superior colliculus(SC), a structure known to contain visual and oculomotor maps for guiding saccades. We report that, for visual stimuli, neurons showed circumscribed receptive fields consistent with a map, but for auditory stimuli, they had open-ended response patterns consistent with a rate or level-of-activity code for location. The discrepant response patterns were not segregated into different neural populations but occurred in the same neurons. We show that a read-out algorithm in which the site and level of SC activity both contribute to the computation of stimulus location is successful at evaluating the discrepant visual and auditory codes, and can account for subtle but systematic differences in the accuracy of auditory compared to visual saccades. This suggests that a given population of neurons can use different codes to support appropriate multimodal behavior.
Resumo:
Secure Access For Everyone (SAFE), is an integrated system for managing trust
using a logic-based declarative language. Logical trust systems authorize each
request by constructing a proof from a context---a set of authenticated logic
statements representing credentials and policies issued by various principals
in a networked system. A key barrier to practical use of logical trust systems
is the problem of managing proof contexts: identifying, validating, and
assembling the credentials and policies that are relevant to each trust
decision.
SAFE addresses this challenge by (i) proposing a distributed authenticated data
repository for storing the credentials and policies; (ii) introducing a
programmable credential discovery and assembly layer that generates the
appropriate tailored context for a given request. The authenticated data
repository is built upon a scalable key-value store with its contents named by
secure identifiers and certified by the issuing principal. The SAFE language
provides scripting primitives to generate and organize logic sets representing
credentials and policies, materialize the logic sets as certificates, and link
them to reflect delegation patterns in the application. The authorizer fetches
the logic sets on demand, then validates and caches them locally for further
use. Upon each request, the authorizer constructs the tailored proof context
and provides it to the SAFE inference for certified validation.
Delegation-driven credential linking with certified data distribution provides
flexible and dynamic policy control enabling security and trust infrastructure
to be agile, while addressing the perennial problems related to today's
certificate infrastructure: automated credential discovery, scalable
revocation, and issuing credentials without relying on centralized authority.
We envision SAFE as a new foundation for building secure network systems. We
used SAFE to build secure services based on case studies drawn from practice:
(i) a secure name service resolver similar to DNS that resolves a name across
multi-domain federated systems; (ii) a secure proxy shim to delegate access
control decisions in a key-value store; (iii) an authorization module for a
networked infrastructure-as-a-service system with a federated trust structure
(NSF GENI initiative); and (iv) a secure cooperative data analytics service
that adheres to individual secrecy constraints while disclosing the data. We
present empirical evaluation based on these case studies and demonstrate that
SAFE supports a wide range of applications with low overhead.
Resumo:
The problem of social diffusion has animated sociological thinking on topics ranging from the spread of an idea, an innovation or a disease, to the foundations of collective behavior and political polarization. While network diffusion has been a productive metaphor, the reality of diffusion processes is often muddier. Ideas and innovations diffuse differently from diseases, but, with a few exceptions, the diffusion of ideas and innovations has been modeled under the same assumptions as the diffusion of disease. In this dissertation, I develop two new diffusion models for "socially meaningful" contagions that address two of the most significant problems with current diffusion models: (1) that contagions can only spread along observed ties, and (2) that contagions do not change as they spread between people. I augment insights from these statistical and simulation models with an analysis of an empirical case of diffusion - the use of enterprise collaboration software in a large technology company. I focus the empirical study on when people abandon innovations, a crucial, and understudied aspect of the diffusion of innovations. Using timestamped posts, I analyze when people abandon software to a high degree of detail.
To address the first problem, I suggest a latent space diffusion model. Rather than treating ties as stable conduits for information, the latent space diffusion model treats ties as random draws from an underlying social space, and simulates diffusion over the social space. Theoretically, the social space model integrates both actor ties and attributes simultaneously in a single social plane, while incorporating schemas into diffusion processes gives an explicit form to the reciprocal influences that cognition and social environment have on each other. Practically, the latent space diffusion model produces statistically consistent diffusion estimates where using the network alone does not, and the diffusion with schemas model shows that introducing some cognitive processing into diffusion processes changes the rate and ultimate distribution of the spreading information. To address the second problem, I suggest a diffusion model with schemas. Rather than treating information as though it is spread without changes, the schema diffusion model allows people to modify information they receive to fit an underlying mental model of the information before they pass the information to others. Combining the latent space models with a schema notion for actors improves our models for social diffusion both theoretically and practically.
The empirical case study focuses on how the changing value of an innovation, introduced by the innovations' network externalities, influences when people abandon the innovation. In it, I find that people are least likely to abandon an innovation when other people in their neighborhood currently use the software as well. The effect is particularly pronounced for supervisors' current use and number of supervisory team members who currently use the software. This case study not only points to an important process in the diffusion of innovation, but also suggests a new approach -- computerized collaboration systems -- to collecting and analyzing data on organizational processes.