5 resultados para TIME-TREND ANALYSIS

em Duke University


Relevância:

90.00% 90.00%

Publicador:

Resumo:

BACKGROUND: Invasive fungal infections (IFIs) are a major cause of morbidity and mortality among organ transplant recipients. Multicenter prospective surveillance data to determine disease burden and secular trends are lacking. METHODS: The Transplant-Associated Infection Surveillance Network (TRANSNET) is a consortium of 23 US transplant centers, including 15 that contributed to the organ transplant recipient dataset. We prospectively identified IFIs among organ transplant recipients from March, 2001 through March, 2006 at these sites. To explore trends, we calculated the 12-month cumulative incidence among 9 sequential cohorts. RESULTS: During the surveillance period, 1208 IFIs were identified among 1063 organ transplant recipients. The most common IFIs were invasive candidiasis (53%), invasive aspergillosis (19%), cryptococcosis (8%), non-Aspergillus molds (8%), endemic fungi (5%), and zygomycosis (2%). Median time to onset of candidiasis, aspergillosis, and cryptococcosis was 103, 184, and 575 days, respectively. Among a cohort of 16,808 patients who underwent transplantation between March 2001 and September 2005 and were followed through March 2006, a total of 729 IFIs were reported among 633 persons. One-year cumulative incidences of the first IFI were 11.6%, 8.6%, 4.7%, 4.0%, 3.4%, and 1.3% for small bowel, lung, liver, heart, pancreas, and kidney transplant recipients, respectively. One-year incidence was highest for invasive candidiasis (1.95%) and aspergillosis (0.65%). Trend analysis showed a slight increase in cumulative incidence from 2002 to 2005. CONCLUSIONS: We detected a slight increase in IFIs during the surveillance period. These data provide important insights into the timing and incidence of IFIs among organ transplant recipients, which can help to focus effective prevention and treatment strategies.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We discuss a general approach to dynamic sparsity modeling in multivariate time series analysis. Time-varying parameters are linked to latent processes that are thresholded to induce zero values adaptively, providing natural mechanisms for dynamic variable inclusion/selection. We discuss Bayesian model specification, analysis and prediction in dynamic regressions, time-varying vector autoregressions, and multivariate volatility models using latent thresholding. Application to a topical macroeconomic time series problem illustrates some of the benefits of the approach in terms of statistical and economic interpretations as well as improved predictions. Supplementary materials for this article are available online. © 2013 Copyright Taylor and Francis Group, LLC.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an analytical method that yields the real and imaginary parts of the refractive index (RI) from low-coherence interferometry measurements, leading to the separation of the scattering and absorption coefficients of turbid samples. The imaginary RI is measured using time-frequency analysis, with the real part obtained by analyzing the nonlinear phase induced by a sample. A derivation relating the real part of the RI to the nonlinear phase term of the signal is presented, along with measurements from scattering and nonscattering samples that exhibit absorption due to hemoglobin.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: With the globalization of clinical trials, a growing emphasis has been placed on the standardization of the workflow in order to ensure the reproducibility and reliability of the overall trial. Despite the importance of workflow evaluation, to our knowledge no previous studies have attempted to adapt existing modeling languages to standardize the representation of clinical trials. Unified Modeling Language (UML) is a computational language that can be used to model operational workflow, and a UML profile can be developed to standardize UML models within a given domain. This paper's objective is to develop a UML profile to extend the UML Activity Diagram schema into the clinical trials domain, defining a standard representation for clinical trial workflow diagrams in UML. METHODS: Two Brazilian clinical trial sites in rheumatology and oncology were examined to model their workflow and collect time-motion data. UML modeling was conducted in Eclipse, and a UML profile was developed to incorporate information used in discrete event simulation software. RESULTS: Ethnographic observation revealed bottlenecks in workflow: these included tasks requiring full commitment of CRCs, transferring notes from paper to computers, deviations from standard operating procedures, and conflicts between different IT systems. Time-motion analysis revealed that nurses' activities took up the most time in the workflow and contained a high frequency of shorter duration activities. Administrative assistants performed more activities near the beginning and end of the workflow. Overall, clinical trial tasks had a greater frequency than clinic routines or other general activities. CONCLUSIONS: This paper describes a method for modeling clinical trial workflow in UML and standardizing these workflow diagrams through a UML profile. In the increasingly global environment of clinical trials, the standardization of workflow modeling is a necessary precursor to conducting a comparative analysis of international clinical trials workflows.