1 resultado para THEOREMS
em Duke University
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (2)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (4)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (7)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (13)
- Aston University Research Archive (6)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (12)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (22)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (12)
- Brock University, Canada (3)
- Brunel University (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (54)
- CaltechTHESIS (11)
- Cambridge University Engineering Department Publications Database (7)
- CentAUR: Central Archive University of Reading - UK (23)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (14)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (2)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- Greenwich Academic Literature Archive - UK (1)
- Harvard University (1)
- Helda - Digital Repository of University of Helsinki (6)
- Indian Institute of Science - Bangalore - Índia (49)
- Massachusetts Institute of Technology (6)
- National Center for Biotechnology Information - NCBI (3)
- Nottingham eTheses (5)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (15)
- Queensland University of Technology - ePrints Archive (7)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (3)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (45)
- Repositorio Institucional Universidad EAFIT - Medelin - Colombia (1)
- RU-FFYL. Repositorio de la Facultad de Filosofiía y Letras. UNAM. - Mexico (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (3)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (4)
- Université de Montréal, Canada (16)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (9)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (8)
Resumo:
Given a probability distribution on an open book (a metric space obtained by gluing a disjoint union of copies of a half-space along their boundary hyperplanes), we define a precise concept of when the Fréchet mean (barycenter) is sticky. This nonclassical phenomenon is quantified by a law of large numbers (LLN) stating that the empirical mean eventually almost surely lies on the (codimension 1 and hence measure 0) spine that is the glued hyperplane, and a central limit theorem (CLT) stating that the limiting distribution is Gaussian and supported on the spine.We also state versions of the LLN and CLT for the cases where the mean is nonsticky (i.e., not lying on the spine) and partly sticky (i.e., is, on the spine but not sticky). © Institute of Mathematical Statistics, 2013.