3 resultados para Systolic array

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Heavy episodic (i.e., "binge") drinking (i.e., ≥five drinks/occasion) is highly prevalent among young adults; those who binge do so four times per month on average, consuming nine drinks on average on each occasion. Although it is well established that chronic heavy drinking (≥two alcoholic beverages per day) increases the risk of hypertension, the relationship between binge drinking and blood pressure is not well described. Our aim was to describe the relationship between frequency of binge drinking, both current (at age 24 years) and past (at age 20 years), and systolic blood pressure (SBP) at age 24 years. METHODS: Participants (n = 756) from the longitudinal Nicotine Dependence in Teens study reported alcohol consumption at ages 20 and 24 years and had SBP measured at age 24 years. We examined the association between binge drinking and SBP using multiple linear regression, controlling for sex, race/ethnicity, education, monthly drinking in high school, cigarette smoking, and body mass index. RESULTS: Compared to nonbinge drinkers, SBP at age 24 years was 2.61 [.41, 4.82] mm Hg higher among current monthly bingers and 4.03 [1.35, 6.70] mm Hg higher among current weekly bingers. SBP at age 24 years was 2.90 [.54, 5.25] mm Hg higher among monthly bingers at age 20 years and 3.64 [.93, 6.35] mm Hg higher among weekly bingers at age 20 years, compared to nonbinge drinkers. CONCLUSIONS: Frequent binge drinking at ages 20 and 24 years is associated with higher SBP at age 24 years and may be implicated in the development of hypertension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The genomes of many strains of baker’s yeast, Saccharomyces cerevisiae, contain multiple repeats of the copper-binding protein Cup1. Cup1 is a member of the metallothionein family, and is found in a tandem array on chromosome VIII. In this thesis, I describe studies that characterized these tandem arrays and their mechanism of formation across diverse strains of yeast. I show that CUP1 arrays are an illuminating model system for observing recombination in eukaryotes, and describe insights derived from these observations.

In our first study, we analyzed 101 natural isolates of S. cerevisiae in order to examine the diversity of CUP1-containing repeats across different strains. We identified five distinct classes of repeats that contain CUP1. We also showed that some strains have only a single copy of CUP1. By comparing the sequences of all the strains, we were able to elucidate the mechanism of formation of the CUP1 tandem arrays, which involved unequal non-homologous recombination events starting from a strain that had only a single CUP1 gene. Our observation of CUP1 repeat formation allows more general insights about the formation of tandem repeats from single-copy genes in eukaryotes, which is one of the most important mechanisms by which organisms evolve.

In our second study, we delved deeper into our mechanistic investigations by measuring the relative rates of inter-homolog and intra-/inter-sister chromatid recombination in CUP1 tandem arrays. We used a diploid strain that is heterozygous both for insertion of a selectable marker (URA3) inside the tandem array, and also for markers at either end of the array. The intra-/inter-sister chromatid recombination rate turned out to be more than ten-fold greater than the inter-homolog rate. Moreover, we found that loss of the proteins Rad51 and Rad52, which are required for most inter-homolog recombination, did not greatly reduce recombination in the CUP1 tandem repeats. Additionally, we investigated the effects of elevated copper levels on the rate of each type of recombination at the CUP1 locus. Both types of recombination are increased at high concentrations of copper (as is known to be the case for CUP1 transcription). Furthermore, the inter-homolog recombination rate at the CUP1 locus is higher than the average over the genome during mitosis, but is lower than the average during meiosis.

The research described in Chapter 2 is published in 2014.