3 resultados para System Compositional Approach
em Duke University
Resumo:
We demonstrate a scalable approach to addressing multiple atomic qubits for use in quantum information processing. Individually trapped 87Rb atoms in a linear array are selectively manipulated with a single laser guided by a microelectromechanical beam steering system. Single qubit oscillations are shown on multiple sites at frequencies of ≃3.5 MHz with negligible crosstalk to neighboring sites. Switching times between the central atom and its closest neighbor were measured to be 6-7 μs while moving between the central atom and an atom two trap sites away took 10-14 μs. © 2010 American Institute of Physics.
Resumo:
We propose a new approach to the fermion sign problem in systems where there is a coupling U such that when it is infinite the fermions are paired into bosons, and there is no fermion permutation sign to worry about. We argue that as U becomes finite, fermions are liberated but are naturally confined to regions which we refer to as fermion bags. The fermion sign problem is then confined to these bags and may be solved using the determinantal trick. In the parameter regime where the fermion bags are small and their typical size does not grow with the system size, construction of Monte Carlo methods that are far more efficient than conventional algorithms should be possible. In the region where the fermion bags grow with system size, the fermion bag approach continues to provide an alternative approach to the problem but may lose its main advantage in terms of efficiency. The fermion bag approach also provides new insights and solutions to sign problems. A natural solution to the "silver blaze problem" also emerges. Using the three-dimensional massless lattice Thirring model as an example, we introduce the fermion bag approach and demonstrate some of these features. We compute the critical exponents at the quantum phase transition and find ν=0.87(2) and η=0.62(2). © 2010 The American Physical Society.
Resumo:
Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.