3 resultados para Synapse Formation

em Duke University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disease caused by the expansion of a poly-glutamine (poly-Q) stretch in the huntingtin (Htt) protein. Gain-of-function effects of mutant Htt have been extensively investigated as the major driver of neurodegeneration in HD. However, loss-of-function effects of poly-Q mutations recently emerged as potential drivers of disease pathophysiology. Early synaptic problems in the excitatory cortical and striatal connections have been reported in HD, but the role of Htt protein in synaptic connectivity was unknown. Therefore, we investigated the role of Htt in synaptic connectivity in vivo by conditionally silencing Htt in the developing mouse cortex. When cortical Htt function was silenced, cortical and striatal excitatory synapses formed and matured at an accelerated pace through postnatal day 21 (P21). This exuberant synaptic connectivity was lost over time in the cortex, resulting in the deterioration of synapses by 5 weeks. Synaptic decline in the cortex was accompanied with layer- and region-specific reactive gliosis without cell loss. To determine whether the disease-causing poly-Q mutation in Htt affects synapse development, we next investigated the synaptic connectivity in a full-length knock-in mouse model of HD, the zQ175 mouse. Similar to the cortical conditional knock-outs, we found excessive excitatory synapse formation and maturation in the cortices of P21 zQ175, which was lost by 5 weeks. Together, our findings reveal that cortical Htt is required for the correct establishment of cortical and striatal excitatory circuits, and this function of Htt is lost when the mutant Htt is present.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Growth cone guidance and synaptic plasticity involve dynamic local changes in proteins at axons and dendrites. The Dual-Leucine zipper Kinase MAPKKK (DLK) has been previously implicated in synaptogenesis and axon outgrowth in C. elegans and other animals. Here we show that in C. elegans DLK-1 regulates not only proper synapse formation and axon morphology but also axon regeneration by influencing mRNA stability. DLK-1 kinase signals via a MAPKAP kinase, MAK-2, to stabilize the mRNA encoding CEBP-1, a bZip protein related to CCAAT/enhancer-binding proteins, via its 3'UTR. Inappropriate upregulation of cebp-1 in adult neurons disrupts synapses and axon morphology. CEBP-1 and the DLK-1 pathway are essential for axon regeneration after laser axotomy in adult neurons, and axotomy induces translation of CEBP-1 in axons. Our findings identify the DLK-1 pathway as a regulator of mRNA stability in synapse formation and maintenance and also in adult axon regeneration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

mRNA localization is emerging as a critical cellular mechanism for the spatiotemporal regulation of protein expression and serves important roles in oogenesis, embryogenesis, cell fate specification, and synapse formation. Signal sequence-encoding mRNAs are localized to the endoplasmic reticulum (ER) membrane by either of two mechanisms, a canonical mechanism of translation on ER-bound ribosomes (signal recognition particle pathway), or a poorly understood direct ER anchoring mechanism. In this study, we identify that the ER integral membrane proteins function as RNA-binding proteins and play important roles in the direct mRNA anchoring to the ER. We report that one of the ER integral membrane RNA-binding protein, AEG-1 (astrocyte elevated gene-1), functions in the direct ER anchoring and translational regulation of mRNAs encoding endomembrane transmembrane proteins. HITS-CLIP and PAR-CLIP analyses of the AEG-1 mRNA interactome of human hepatocellular carcinoma cells revealed a high enrichment for mRNAs encoding endomembrane organelle proteins, most notably encoding transmembrane proteins. AEG-1 binding sites were highly enriched in the coding sequence and displayed a signature cluster enrichment downstream of encoded transmembrane domains. In overexpression and knockdown models, AEG-1 expression markedly regulates translational efficiency and protein functions of two of its bound transcripts, MDR1 and NPC1. This study reveals a molecular mechanism for the selective localization of mRNAs to the ER and identifies a novel post-transcriptional gene regulation function for AEG-1 in membrane protein expression.