2 resultados para Superconducting transition temperature

em Duke University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Quantitative models are required to engineer biomaterials with environmentally responsive properties. With this goal in mind, we developed a model that describes the pH-dependent phase behavior of a class of stimulus responsive elastin-like polypeptides (ELPs) that undergo reversible phase separation in response to their solution environment. Under isothermal conditions, charged ELPs can undergo phase separation when their charge is neutralized. Optimization of this behavior has been challenging because the pH at which they phase separate, pHt, depends on their composition, molecular weight, concentration, and temperature. To address this problem, we developed a quantitative model to describe the phase behavior of charged ELPs that uses the Henderson-Hasselbalch relationship to describe the effect of side-chain ionization on the phase-transition temperature of an ELP. The model was validated with pH-responsive ELPs that contained either acidic (Glu) or basic (His) residues. The phase separation of both ELPs fit this model across a range of pH. These results have important implications for applications of pH-responsive ELPs because they provide a quantitative model for the rational design of pH-responsive polypeptides whose transition can be triggered at a specified pH.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The binary A(8)B phase (prototype Pt(8)Ti) has been experimentally observed in 11 systems. A high-throughput search over all the binary transition intermetallics, however, reveals 59 occurrences of the A(8)B phase: Au(8)Zn(dagger), Cd(8)Sc(dagger), Cu(8)Ni(dagger), Cu(8)Zn(dagger), Hg(8)La, Ir(8)Os(dagger), Ir(8)Re, Ir(8)Ru(dagger), Ir(8)Tc, Ir(8)W(dagger), Nb(8)Os(dagger), Nb(8)Rh(dagger), Nb(8)Ru(dagger), Nb(8)Ta(dagger), Ni(8)Fe, Ni(8)Mo(dagger)*, Ni(8)Nb(dagger)*, Ni(8)Ta*, Ni(8)V*, Ni(8)W, Pd(8)Al(dagger), Pd(8)Fe, Pd(8)Hf, Pd(8)Mn, Pd(8)Mo*, Pd(8)Nb, Pd(8)Sc, Pd(8)Ta, Pd(8)Ti, Pd(8)V*, Pd(8)W*, Pd(8)Zn, Pd(8)Zr, Pt(8)Al(dagger), Pt(8)Cr*, Pt(8)Hf, Pt(8)Mn, Pt(8)Mo, Pt(8)Nb, Pt(8)Rh(dagger), Pt(8)Sc, Pt(8)Ta, Pt(8)Ti*, Pt(8)V*, Pt(8)W, Pt(8)Zr*, Rh(8)Mo, Rh(8)W, Ta(8)Pd, Ta(8)Pt, Ta(8)Rh, V(8)Cr(dagger), V(8)Fe(dagger), V(8)Ir(dagger), V(8)Ni(dagger), V(8)Pd, V(8)Pt, V(8)Rh, and V(8)Ru(dagger) ((dagger) = metastable, * = experimentally observed). This is surprising for the wealth of new occurrences that are predicted, especially in well-characterized systems (e.g., Cu-Zn). By verifying all experimental results while offering additional predictions, our study serves as a striking demonstration of the power of the high-throughput approach. The practicality of the method is demonstrated in the Rh-W system. A cluster-expansion-based Monte Carlo model reveals a relatively high order-disorder transition temperature.