3 resultados para Submicroscopic imbalances
em Duke University
Resumo:
Background: Haiti has the highest maternal mortality rate in the Latin American and Caribbean region. Despite the fact that Haiti has received twice as much family planning assistance as any other country in the western hemisphere, the unmet need for contraception remains particularly high. Our hypothesis is that unsuccessful efforts of family planning programs may be related to a misconstrued understanding of the complex role of gender in relationships and community in Haiti. This manuscript is one of four parts of a study that intends to examine some of these issues with a particular focus on the influence of uptake and adherence to long acting contraceptive (LAC) methods.
Methods: We conducted a three-month community-based qualitative assessment through 20 in-depth interviews in Fondwa, Haiti. Participants were divided into 4 groups of five: female users, female non-users, men and key community stakeholders.
Results: Based on the qualitative interviews, we found that main barriers included lack of access to family planning education and services and concerns regarding side effects and health risks, especially related to menstrual disruption and fears of infertility. Women have a constant pressure to remain fertile and bear children, due not only to social but also economic needs. As relationships are conceived as means for economic provision, the likelihood of uptake of irreversible methods (vasectomy and tubal ligation) was restricted by loss of fertility. Consequently, the discourse of family planning, though self-recognized in their favor, assumes women can afford not to bear children. This assumption should be questioned given the complexities of the other social determinants at play, all which affect the reproductive decisions made by Haitians.
Conclusions: Overall, our study indicated awareness surrounding contraception in the Haitian Fondwa community. Combining the substantial impact of birth spacing with the elevated yet unmet need for contraceptives in the area, it is necessary to address the intricacies of gender issues in order to implement successful programing. In Haiti not being able to bear a child poses a threat to economic and social survival, possibly explaining a dimension of the low uptake of LACs in the region, even when made available. For this reason, we believe IUDs (Intrauterine Devices) provide a suitable alternative, allowing the couple to comprehend all of the factors involved in decision making, thus decreasing the imbalances of power and knowledge prior to considering an irreversible alternative.
Resumo:
The lungs are vital organs whose airways are lined with a continuous layer of epithelial cells. Epithelial cells in the distal most part of the lung, the alveolar space, are specialized to facilitate gas exchange. Proximal to the alveoli is the airway epithelium, which provides an essential barrier and is the first line of defense against inhaled toxicants, pollutants, and pathogens. Although the postnatal lung is a quiescent organ, it has an inherent ability to regenerate in response to injury. Proper balance between maintaining quiescence and undergoing repair is crucial, with imbalances in these processes leading to fibrosis or tumor development. Stem and progenitor cells are central to maintaining balance, given that they proliferate and renew both themselves and the various differentiated cells of the lung. However, the precise mechanisms regulating quiescence and repair in the lungs are largely unknown. In this dissertation, ionizing radiation is used as a physiologically relevant injury model to better understand the repair process of the airway epithelium. We use in vitro and in vivo mouse models to study the response of a secretory progenitor, the club cell, to various doses and qualities of ionizing radiation. Exposure to radiation found in space environments and in some types of radiotherapy caused clonal expansion of club cells specifically in the most distal branches of the airway epithelium, indicating that the progenitors residing in the terminal bronchioles are radiosensitive. This clonal expansion is due to an increase in p53-dependent apoptosis, senescence, and mitotic defects. Through the course of this work, we discovered that p53 is not only involved in radiation response, but is also a novel regulator of airway epithelial homeostasis. p53 acts in a gene dose-dependent manner to regulate the composition of airway epithelium by maintaining quiescence and regulating differentiation of club progenitor cells in the steady-state lung. The work presented in this dissertation represents an advance in our understanding of the molecular mechanisms underlying maintenance of airway epithelial progenitor cells as well as their repair following ionizing radiation exposure.
Resumo:
Endopolyploid cells (hereafter - polyploid cells), which contain whole genome duplications in an otherwise diploid organism, play vital roles in development and physiology of diverse organs such as our heart and liver. Polyploidy is also observed with high frequency in many tumors, and division of such cells frequently creates aneuploidy (chromosomal imbalances), a hallmark of cancer. Despite its frequent occurrence and association with aneuploidy, little is known about the specific role that polyploidy plays in diverse contexts. Using a new model tissue, the Drosophila rectal papilla, we sought to uncover connections between polyploidy and aneuploidy during organ development. Our lab previously discovered that the papillar cells of the Drosophila hindgut undergo developmentally programmed polyploid cell divisions, and that these polyploid cell divisions are highly error-prone. Time-lapse studies of polyploid mitosis revealed that the papillar cells undergo a high percentage of tripolar anaphase, which causes extreme aneuploidy. Despite this massive chromosome imbalance, we found the tripolar daughter cells are viable and support normal organ development and function, suggesting acquiring extra genome sets enables a cell to tolerate the genomic alterations incurred by aneuploidy. We further extended these findings by seeking mechanisms by which the papillar cells tolerated this resultant aneuploidy.