5 resultados para Subcellular Localisation

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphorylation of G-protein-coupled receptors plays an important role in regulating their function. In this study the G-protein-coupled receptor phosphatase (GRP) capable of dephosphorylating G-protein-coupled receptor kinase-phosphorylated receptors is described. The GRP activity of bovine brain is a latent oligomeric form of protein phosphatase type 2A (PP-2A) exclusively associated with the particulate fraction. GRP activity is observed only when assayed in the presence of protamine or when phosphatase-containing fractions are subjected to freeze/thaw treatment under reducing conditions. Consistent with its identification as a member of the PP-2A family, the GRP is potently inhibited by okadaic acid but not by I-2, the specific inhibitor of protein phosphatase type 1. Solubilization of the membrane-associated GRP followed by gel filtration in the absence of detergent yields a 150-kDa peak of latent receptor phosphatase activity. Western blot analysis of this phosphatase reveals a likely subunit composition of AB alpha C. PP-2A of this subunit composition has previously been characterized as a soluble enzyme, yet negligible soluble GRP activity was observed. The subcellular distribution and substrate specificity of the GRP suggests significant differences between it and previously characterized forms of PP-2A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prolonged exposure of cells or tissues to drugs or hormones such as catecholamines leads to a state of refractoriness to further stimulation by that agent, known as homologous desensitization. In the case of the beta-adrenergic receptor coupled to adenylate cyclase, this process has been shown to be intimately associated with the sequestration of the receptors from the cell surface through a cAMP-independent process. Recently, we have shown that homologous desensitization in the frog erythrocyte model system is also associated with increased phosphorylation of the beta-adrenergic receptor. We now provide evidence that the phosphorylation state of the beta-adrenergic receptor regulates its functional coupling to adenylate cyclase, subcellular translocation, and recycling to the cell surface during the process of agonist-induced homologous desensitization. Moreover, we show that the receptor phosphorylation is reversed by a phosphatase specifically associated with the sequestered subcellular compartment. At 23 degrees C, the time courses of beta-adrenergic receptor phosphorylation, sequestration, and adenylate cyclase desensitization are identical, occurring without a lag, exhibiting a t1/2 of 30 min, and reaching a maximum at approximately 3 hr. Upon cell lysis, the sequestered beta-adrenergic receptors can be partially recovered in a light membrane vesicle fraction that is separable from the plasma membranes by differential centrifugation. The increased beta-adrenergic receptor phosphorylation is apparently reversed in the sequestered vesicle fraction as the sequestered receptors exhibit a phosphate/receptor stoichiometry that is similar to that observed under basal conditions. High levels of a beta-adrenergic receptor phosphatase activity appear to be associated with the sequestered vesicle membranes. The functional activity of the phosphorylated beta-adrenergic receptor was examined by reconstituting purified receptor with its biochemical effector the guanine nucleotide regulatory protein (Ns) in phospholipid vesicles and assessing the receptor-stimulated GTPase activity of Ns. Compared to controls, phosphorylated beta-adrenergic receptors, purified from desensitized cells, were less efficacious in activating the Ns GTPase activity. These results suggest that phosphorylation of the beta-adrenergic receptor leads to its functional uncoupling and physical translocation away from the cell surface into a sequestered membrane domain. In the sequestered compartment, the phosphorylation is reversed thus enabling the receptor to recycle back to the cell surface and recouple with adenylate cyclase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The beta-adrenergic receptor kinase (beta ARK) phosphorylates the agonist-occupied beta-adrenergic receptor to promote rapid receptor uncoupling from Gs, thereby attenuating adenylyl cyclase activity. Beta ARK-mediated receptor desensitization may reflect a general molecular mechanism operative on many G-protein-coupled receptor systems and, particularly, synaptic neurotransmitter receptors. Two distinct cDNAs encoding beta ARK isozymes were isolated from rat brain and sequenced. The regional and cellular distributions of these two gene products, termed beta ARK1 and beta ARK2, were determined in brain by in situ hybridization and by immunohistochemistry at the light and electron microscopic levels. The beta ARK isozymes were found to be expressed primarily in neurons distributed throughout the CNS. Ultrastructurally, beta ARK1 and beta ARK2 immunoreactivities were present both in association with postsynaptic densities and, presynaptically, with axon terminals. The beta ARK isozymes have a regional and subcellular distribution consistent with a general role in the desensitization of synaptic receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of beta-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered beta-arrestin-2 binding to the receptor and internalization of AT1aR-beta-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-beta-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, beta-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged beta-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with beta-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with beta-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to beta-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in beta-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to beta-arrestin-2, and the association of beta-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that beta-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The zinc-finger protein Rotund (Rn) plays a critical role in controlling the development of the fly olfactory system. However, little is known about its molecular function in vivo. Here, we added protein tags to the rn locus using CRISPR-Cas9 technology in Drosophila to investigate its subcellular localization and the genes that it regulates . We previously used a reporter construct to show that rn is expressed in a subset of olfactory receptor neuron (ORN) precursors and it is required for the diversification of ORN fates. Here, we show that tagged endogenous Rn protein is functional based on the analysis of ORN phenotypes. Using this method, we also mapped the expression pattern of the endogenous isoform-specific tags in vivo with increased precision. Comparison of the Rn expression pattern from this study with previously published results using GAL4 reporters showed that Rn is mainly present in early steps in antennal disc patterning, but not in pupal stages when ORNs are born. Finally, using chromatin immunoprecipitation, we showed a direct binding of Rotund to a previously identified regulatory element upstream of the bric-a-brac gene locus in the developing antennal disc.