3 resultados para Structured and unstructured orchestration components
em Duke University
Resumo:
This dissertation consists of three distinct components: (1) “Double Rainbow,” a notated composition for an acoustic ensemble of 10 instruments, ca. 36 minutes. (2) “Appalachiana”, a fixed-media composition for electro-acoustic music and video, ca. 30 minutes, and (3) “'The Invisible Mass': Exploring Compositional Technique in Alfred Schnittke’s Second Symphony”, an analytical article.
(1) Double Rainbow is a ca. 36 minute composition in four movements scored for 10 instruments: flute, Bb clarinet (doubling on bass clarinet), tenor saxophone (doubling on alto saxophone), french horn, percussion (glockenspiel, vibraphone, wood block, 3 toms, snare drum, bass drum, suspended cymbal), piano, violin, viola, cello, and double bass. Each of the four movements of the piece explore their own distinct character and set of compositional goals. The piece is presented as a musical score and as a recording, which was extensively treated in post-production.
(2) Appalachiana, is a ca. 30 minute fixed-media composition for music and video. The musical component was created as a vehicle to showcase several approaches to electro-acoustic music composition –fft re-synthesis for time manipulation effects, the use of a custom-built software instrument which implements generative approaches to creating rhythm and pitch patterns, using a recording of rain to create rhythmic triggers for software instruments, and recording additional components with acoustic instruments. The video component transforms footage of natural landscapes filmed at several locations in North Carolina, Virginia, and West Virginia into a surreal narrative using a variety of color, lighting, distortion, and time-manipulation video effects.
(3) “‘The Invisible Mass:’ Exploring Compositional Technique in Alfred Schnittke’s Second Symphony” is an analytical article that focuses on Alfred Schnittke’s compositional technique as evidenced in the construction of his Second Symphony and discussed by the composer in a number of previously untranslated articles and interviews. Though this symphony is pivotal in the composer’s oeuvre, there are currently no scholarly articles that offer in-depth analyses of the piece. The article combines analyses of the harmony, form, and orchestration in the Second Symphony with relevant quotations from the composer, some from published and translated sources and others newly translated by the author from research at the Russian State Library in St. Petersburg. These offer a perspective on how Schnittke’s compositional technique combines systematic geometric design with keen musical intuition.
Resumo:
The full-scale base-isolated structure studied in this dissertation is the only base-isolated building in South Island of New Zealand. It sustained hundreds of earthquake ground motions from September 2010 and well into 2012. Several large earthquake responses were recorded in December 2011 by NEES@UCLA and by GeoNet recording station nearby Christchurch Women's Hospital. The primary focus of this dissertation is to advance the state-of-the art of the methods to evaluate performance of seismic-isolated structures and the effects of soil-structure interaction by developing new data processing methodologies to overcome current limitations and by implementing advanced numerical modeling in OpenSees for direct analysis of soil-structure interaction.
This dissertation presents a novel method for recovering force-displacement relations within the isolators of building structures with unknown nonlinearities from sparse seismic-response measurements of floor accelerations. The method requires only direct matrix calculations (factorizations and multiplications); no iterative trial-and-error methods are required. The method requires a mass matrix, or at least an estimate of the floor masses. A stiffness matrix may be used, but is not necessary. Essentially, the method operates on a matrix of incomplete measurements of floor accelerations. In the special case of complete floor measurements of systems with linear dynamics, real modes, and equal floor masses, the principal components of this matrix are the modal responses. In the more general case of partial measurements and nonlinear dynamics, the method extracts a number of linearly-dependent components from Hankel matrices of measured horizontal response accelerations, assembles these components row-wise and extracts principal components from the singular value decomposition of this large matrix of linearly-dependent components. These principal components are then interpolated between floors in a way that minimizes the curvature energy of the interpolation. This interpolation step can make use of a reduced-order stiffness matrix, a backward difference matrix or a central difference matrix. The measured and interpolated floor acceleration components at all floors are then assembled and multiplied by a mass matrix. The recovered in-service force-displacement relations are then incorporated into the OpenSees soil structure interaction model.
Numerical simulations of soil-structure interaction involving non-uniform soil behavior are conducted following the development of the complete soil-structure interaction model of Christchurch Women's Hospital in OpenSees. In these 2D OpenSees models, the superstructure is modeled as two-dimensional frames in short span and long span respectively. The lead rubber bearings are modeled as elastomeric bearing (Bouc Wen) elements. The soil underlying the concrete raft foundation is modeled with linear elastic plane strain quadrilateral element. The non-uniformity of the soil profile is incorporated by extraction and interpolation of shear wave velocity profile from the Canterbury Geotechnical Database. The validity of the complete two-dimensional soil-structure interaction OpenSees model for the hospital is checked by comparing the results of peak floor responses and force-displacement relations within the isolation system achieved from OpenSees simulations to the recorded measurements. General explanations and implications, supported by displacement drifts, floor acceleration and displacement responses, force-displacement relations are described to address the effects of soil-structure interaction.
Resumo:
Rolling Isolation Systems provide a simple and effective means for protecting components from horizontal floor vibrations. In these systems a platform rolls on four steel balls which, in turn, rest within shallow bowls. The trajectories of the balls is uniquely determined by the horizontal and rotational velocity components of the rolling platform, and thus provides nonholonomic constraints. In general, the bowls are not parabolic, so the potential energy function of this system is not quadratic. This thesis presents the application of Gauss's Principle of Least Constraint to the modeling of rolling isolation platforms. The equations of motion are described in terms of a redundant set of constrained coordinates. Coordinate accelerations are uniquely determined at any point in time via Gauss's Principle by solving a linearly constrained quadratic minimization. In the absence of any modeled damping, the equations of motion conserve energy. This mathematical model is then used to find the bowl profile that minimizes response acceleration subject to displacement constraint.