9 resultados para Stochastic differential equation with hysteresis
em Duke University
Resumo:
The time reversal of stochastic diffusion processes is revisited with emphasis on the physical meaning of the time-reversed drift and the noise prescription in the case of multiplicative noise. The local kinematics and mechanics of free diffusion are linked to the hydrodynamic description. These properties also provide an interpretation of the Pope-Ching formula for the steady-state probability density function along with a geometric interpretation of the fluctuation-dissipation relation. Finally, the statistics of the local entropy production rate of diffusion are discussed in the light of local diffusion properties, and a stochastic differential equation for entropy production is obtained using the Girsanov theorem for reversed diffusion. The results are illustrated for the Ornstein-Uhlenbeck process.
Resumo:
In this dissertation, we develop a novel methodology for characterizing and simulating nonstationary, full-field, stochastic turbulent wind fields.
In this new method, nonstationarity is characterized and modeled via temporal coherence, which is quantified in the discrete frequency domain by probability distributions of the differences in phase between adjacent Fourier components.
The empirical distributions of the phase differences can also be extracted from measured data, and the resulting temporal coherence parameters can quantify the occurrence of nonstationarity in empirical wind data.
This dissertation (1) implements temporal coherence in a desktop turbulence simulator, (2) calibrates empirical temporal coherence models for four wind datasets, and (3) quantifies the increase in lifetime wind turbine loads caused by temporal coherence.
The four wind datasets were intentionally chosen from locations around the world so that they had significantly different ambient atmospheric conditions.
The prevalence of temporal coherence and its relationship to other standard wind parameters was modeled through empirical joint distributions (EJDs), which involved fitting marginal distributions and calculating correlations.
EJDs have the added benefit of being able to generate samples of wind parameters that reflect the characteristics of a particular site.
Lastly, to characterize the effect of temporal coherence on design loads, we created four models in the open-source wind turbine simulator FAST based on the \windpact turbines, fit response surfaces to them, and used the response surfaces to calculate lifetime turbine responses to wind fields simulated with and without temporal coherence.
The training data for the response surfaces was generated from exhaustive FAST simulations that were run on the high-performance computing (HPC) facilities at the National Renewable Energy Laboratory.
This process was repeated for wind field parameters drawn from the empirical distributions and for wind samples drawn using the recommended procedure in the wind turbine design standard \iec.
The effect of temporal coherence was calculated as a percent increase in the lifetime load over the base value with no temporal coherence.
Resumo:
© 2015 Society for Industrial and Applied Mathematics.We consider parabolic PDEs with randomly switching boundary conditions. In order to analyze these random PDEs, we consider more general stochastic hybrid systems and prove convergence to, and properties of, a stationary distribution. Applying these general results to the heat equation with randomly switching boundary conditions, we find explicit formulae for various statistics of the solution and obtain almost sure results about its regularity and structure. These results are of particular interest for biological applications as well as for their significant departure from behavior seen in PDEs forced by disparate Gaussian noise. Our general results also have applications to other types of stochastic hybrid systems, such as ODEs with randomly switching right-hand sides.
Resumo:
Numerical approximation of the long time behavior of a stochastic di.erential equation (SDE) is considered. Error estimates for time-averaging estimators are obtained and then used to show that the stationary behavior of the numerical method converges to that of the SDE. The error analysis is based on using an associated Poisson equation for the underlying SDE. The main advantages of this approach are its simplicity and universality. It works equally well for a range of explicit and implicit schemes, including those with simple simulation of random variables, and for hypoelliptic SDEs. To simplify the exposition, we consider only the case where the state space of the SDE is a torus, and we study only smooth test functions. However, we anticipate that the approach can be applied more widely. An analogy between our approach and Stein's method is indicated. Some practical implications of the results are discussed. Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
Resumo:
The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $\lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $\lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.
Resumo:
The dynamics of a population undergoing selection is a central topic in evolutionary biology. This question is particularly intriguing in the case where selective forces act in opposing directions at two population scales. For example, a fast-replicating virus strain outcompetes slower-replicating strains at the within-host scale. However, if the fast-replicating strain causes host morbidity and is less frequently transmitted, it can be outcompeted by slower-replicating strains at the between-host scale. Here we consider a stochastic ball-and-urn process which models this type of phenomenon. We prove the weak convergence of this process under two natural scalings. The first scaling leads to a deterministic nonlinear integro-partial differential equation on the interval $[0,1]$ with dependence on a single parameter, $\lambda$. We show that the fixed points of this differential equation are Beta distributions and that their stability depends on $\lambda$ and the behavior of the initial data around $1$. The second scaling leads to a measure-valued Fleming-Viot process, an infinite dimensional stochastic process that is frequently associated with a population genetics.
Resumo:
We consider a stochastic process driven by a linear ordinary differential equation whose right-hand side switches at exponential times between a collection of different matrices. We construct planar examples that switch between two matrices where the individual matrices and the average of the two matrices are all Hurwitz (all eigenvalues have strictly negative real part), but nonetheless the process goes to infinity at large time for certain values of the switching rate. We further construct examples in higher dimensions where again the two individual matrices and their averages are all Hurwitz, but the process has arbitrarily many transitions between going to zero and going to infinity at large time as the switching rate varies. In order to construct these examples, we first prove in general that if each of the individual matrices is Hurwitz, then the process goes to zero at large time for sufficiently slow switching rate and if the average matrix is Hurwitz, then the process goes to zero at large time for sufficiently fast switching rate. We also give simple conditions that ensure the process goes to zero at large time for all switching rates. © 2014 International Press.
Resumo:
This dissertation consists of three separate essays on job search and labor market dynamics. In the first essay, “The Impact of Labor Market Conditions on Job Creation: Evidence from Firm Level Data”, I study how much changes in labor market conditions reduce employment fluctuations over the business cycle. Changes in labor market conditions make hiring more expensive during expansions and cheaper during recessions, creating counter-cyclical incentives for job creation. I estimate firm level elasticities of labor demand with respect to changes in labor market conditions, considering two margins: changes in labor market tightness and changes in wages. Using employer-employee matched data from Brazil, I find that all firms are more sensitive to changes in wages rather than labor market tightness, and there is substantial heterogeneity in labor demand elasticity across regions. Based on these results, I demonstrate that changes in labor market conditions reduce the variance of employment growth over the business cycle by 20% in a median region, and this effect is equally driven by changes along each margin. Moreover, I show that the magnitude of the effect of labor market conditions on employment growth can be significantly affected by economic policy. In particular, I document that the rapid growth of the national minimum wages in Brazil in 1997-2010 amplified the impact of the change in labor market conditions during local expansions and diminished this impact during local recessions.
In the second essay, “A Framework for Estimating Persistence of Local Labor
Demand Shocks”, I propose a decomposition which allows me to study the persistence of local labor demand shocks. Persistence of labor demand shocks varies across industries, and the incidence of shocks in a region depends on the regional industrial composition. As a result, less diverse regions are more likely to experience deeper shocks, but not necessarily more long lasting shocks. Building on this idea, I propose a decomposition of local labor demand shocks into idiosyncratic location shocks and nationwide industry shocks and estimate the variance and the persistence of these shocks using the Quarterly Census of Employment and Wages (QCEW) in 1990-2013.
In the third essay, “Conditional Choice Probability Estimation of Continuous- Time Job Search Models”, co-authored with Peter Arcidiacono and Arnaud Maurel, we propose a novel, computationally feasible method of estimating non-stationary job search models. Non-stationary job search models arise in many applications, where policy change can be anticipated by the workers. The most prominent example of such policy is the expiration of unemployment benefits. However, estimating these models still poses a considerable computational challenge, because of the need to solve a differential equation numerically at each step of the optimization routine. We overcome this challenge by adopting conditional choice probability methods, widely used in dynamic discrete choice literature, to job search models and show how the hazard rate out of unemployment and the distribution of the accepted wages, which can be estimated in many datasets, can be used to infer the value of unemployment. We demonstrate how to apply our method by analyzing the effect of the unemployment benefit expiration on duration of unemployment using the data from the Survey of Income and Program Participation (SIPP) in 1996-2007.