12 resultados para Stimulatory Cpg Motifs
em Duke University
Resumo:
Platinum therapeutic agents are widely used in the treatment of several forms of cancer. Various mechanisms for the transport of the drugs have been proposed including passive diffusion across the cellular membrane and active transport via proteins. The copper transport protein Ctr1 is responsible for high affinity copper uptake but has also been implicated in the transport of cisplatin into cells. Human hCtr1 contains two methionine-rich Mets motifs on its extracellular N-terminus that are potential platinum-binding sites: the first one encompasses residues 7-14 with amino acid sequence Met-Gly-Met-Ser-Tyr-Met-Asp-Ser and the second one spans residues 39-46 with sequence Met-Met-Met-Met-Pro-Met-Thr-Phe. In these studies, we use liquid chromatography and mass spectrometry to compare the binding interactions between cisplatin, carboplatin and oxaliplatin with synthetic peptides corresponding to hCtr1 Mets motifs. The interactions of cisplatin and carboplatin with Met-rich motifs that contain three or more methionines result in removal of the carrier ligands of both platinum complexes. In contrast, oxaliplatin retains its cyclohexyldiamine ligand upon platinum coordination to the peptide.
Resumo:
Vertebrate eggs are arrested at Metaphase II by Emi2, the meiotic anaphase-promoting complex/cyclosome (APC/C) inhibitor. Although the importance of Emi2 during oocyte maturation has been widely recognized and its regulation extensively studied, its mechanism of action remained elusive. Many APC/C inhibitors have been reported to act as pseudosubstrates, inhibiting the APC/C by preventing substrate binding. Here we show that a previously identified zinc-binding region is critical for the function of Emi2, whereas the D-box is largely dispensable. We further demonstrate that instead of acting through a "pseudosubstrate" mechanism as previously hypothesized, Emi2 can inhibit Cdc20-dependent activation of the APC/C substoichiometrically, blocking ubiquitin transfer from the ubiquitin-charged E2 to the substrate. These findings provide a novel mechanism of APC/C inhibition wherein the final step of ubiquitin transfer is targeted and raise the interesting possibility that APC/C is inhibited by Emi2 in a catalytic manner.
Resumo:
Phosphorylation of the beta(2) adrenoreceptor (beta(2)AR) by cAMP-activated protein kinase A (PKA) switches its predominant coupling from stimulatory guanine nucleotide regulatory protein (G(s)) to inhibitory guanine nucleotide regulatory protein (G(i)). beta-Arrestins recruit the cAMP-degrading PDE4 phosphodiesterases to the beta(2)AR, thus controlling PKA activity at the membrane. Here we investigate a role for PDE4 recruitment in regulating G protein switching by the beta(2)AR. In human embryonic kidney 293 cells overexpressing a recombinant beta(2)AR, stimulation with isoprenaline recruits beta-arrestins 1 and 2 as well as both PDE4D3 and PDE4D5 to the receptor and stimulates receptor phosphorylation by PKA. The PKA phosphorylation status of the beta(2)AR is enhanced markedly when cells are treated with the selective PDE4-inhibitor rolipram or when they are transfected with a catalytically inactive PDE4D mutant (PDE4D5-D556A) that competitively inhibits isoprenaline-stimulated recruitment of native PDE4 to the beta(2)AR. Rolipram and PDE4D5-D556A also enhance beta(2)AR-mediated activation of extracellular signal-regulated kinases ERK12. This is consistent with a switch in coupling of the receptor from G(s) to G(i), because the ERK12 activation is sensitive to both inhibitors of PKA (H89) and G(i) (pertussis toxin). In cardiac myocytes, the beta(2)AR also switches from G(s) to G(i) coupling. Treating primary cardiac myocytes with isoprenaline induces recruitment of PDE4D3 and PDE4D5 to membranes and activates ERK12. Rolipram robustly enhances this activation in a manner sensitive to both pertussis toxin and H89. Adenovirus-mediated expression of PDE4D5-D556A also potentiates ERK12 activation. Thus, receptor-stimulated beta-arrestin-mediated recruitment of PDE4 plays a central role in the regulation of G protein switching by the beta(2)AR in a physiological system, the cardiac myocyte.
Resumo:
Several G-protein coupled receptors, such as the beta1-adrenergic receptor (beta1-AR), contain polyproline motifs within their intracellular domains. Such motifs in other proteins are known to mediate protein-protein interactions such as with Src homology (SH)3 domains. Accordingly, we used the proline-rich third intracellular loop of the beta1-AR either as a glutathione S-transferase fusion protein in biochemical "pull-down" assays or as bait in the yeast two-hybrid system to search for interacting proteins. Both approaches identified SH3p4/p8/p13 (also referred to as endophilin 1/2/3), a SH3 domain-containing protein family, as binding partners for the beta1-AR. In vitro and in human embryonic kidney (HEK) 293 cells, SH3p4 specifically binds to the third intracellular loop of the beta1-AR but not to that of the beta2-AR. Moreover, this interaction is mediated by the C-terminal SH3 domain of SH3p4. Functionally, overexpression of SH3p4 promotes agonist-induced internalization and modestly decreases the Gs coupling efficacy of beta1-ARs in HEK293 cells while having no effect on beta2-ARs. Thus, our studies demonstrate a role of the SH3p4/p8/p13 protein family in beta1-AR signaling and suggest that interaction between proline-rich motifs and SH3-containing proteins may represent a previously underappreciated aspect of G-protein coupled receptor signaling.
Resumo:
A number of lines of evidence suggest that cross-talk exists between the cellular signal transduction pathways involving tyrosine phosphorylation catalyzed by members of the pp60c-src kinase family and those mediated by guanine nucleotide regulatory proteins (G proteins). In this study, we explore the possibility that direct interactions between pp60c-src and G proteins may occur with functional consequences. Preparations of pp60c-src isolated by immunoprecipitation phosphorylate on tyrosine residues the purified G-protein alpha subunits (G alpha) of several heterotrimeric G proteins. Phosphorylation is highly dependent on G-protein conformation, and G alpha(GDP) uncomplexed by beta gamma subunits appears to be the preferred substrate. In functional studies, phosphorylation of stimulatory G alpha (G alpha s) modestly increases the rate of binding of guanosine 5'-[gamma-[35S]thio]triphosphate to Gs as well as the receptor-stimulated steady-state rate of GTP hydrolysis by Gs. Heterotrimeric G proteins may represent a previously unappreciated class of potential substrates for pp60c-src.
Resumo:
The beta-adrenergic receptor kinase is an enzyme, possibly analogous to rhodopsin kinase, that multiply phosphorylates the beta-adrenergic receptor only when it is occupied by stimulatory agonists. Since this kinase may play an important role in mediating the process of homologous, or agonist-specific, desensitization, we investigated the functional consequences of receptor phosphorylation by the kinase and possible analogies with the mechanism of action of rhodopsin kinase. Pure hamster lung beta 2-adrenergic receptor, reconstituted in phospholipid vesicles, was assessed for its ability to mediate agonist-promoted stimulation of the GTPase activity of coreconstituted stimulatory guanine nucleotide-binding regulatory protein. When the receptor was phosphorylated by partially (approximately 350-fold) purified preparations of beta-adrenergic receptor kinase, as much as 80% inactivation of its functional activity was observed. However, the use of more highly purified enzyme preparations led to a dramatic decrease in the ability of phosphorylation to inactivate the receptor such that pure enzyme preparations (approximately 20,000-fold purified) caused only minimal (approximately 1off/- 7%) inactivation. Addition of pure retinal arrestin (48-kDa protein or S antigen), which is involved in enhancing the inactivating effect of rhodopsin phosphorylation by rhodopsin kinase, led to partial restoration of the functional effect of beta-adrenergic receptor kinase-promoted phosphorylation (41 +/- 3% inactivation). These results suggest the possibility that a protein analogous to retinal arrestin may exist in other tissues and function in concert with beta-adrenergic receptor kinase to regulate the activity of adenylate cyclase-coupled receptors.
Resumo:
Tripartite motif 39 (Trim39) is a RING domain-containing E3 ubiquitin ligase able to inhibit the anaphase-promoting complex (APC/C) directly. Through analysis of Trim39 function in p53-positive and p53-negative cells, we have found, surprisingly, that p53-positive cells lacking Trim39 could not traverse the G1/S transition. This effect did not result from disinhibition of the APC/C. Moreover, although Trim39 loss inhibited etoposide-induced apoptosis in p53-negative cells, apoptosis was enhanced by Trim39 knockdown in p53-positive cells. Furthermore, we show here that the Trim39 can directly bind and ubiquitylate p53 in vitro and in vivo, leading to p53 degradation. Depletion of Trim39 significantly increased p53 protein levels and cell growth retardation in multiple cell lines. We found that the relative importance of Trim39 and the well-characterized p53-directed E3 ligase, murine double minute 2 (MDM2), varied between cell types. In cells that were relatively insensitive to the MDM2 inhibitor, nutlin-3a, apoptosis could be markedly enhanced by siRNA directed against Trim39. As such, Trim39 may serve as a potential therapeutic target in tumors with WT p53 when MDM2 inhibition is insufficient to elevate p53 levels and apoptosis.
Resumo:
Fluctuations in nutrient availability profoundly impact gene expression. Previous work revealed postrecruitment regulation of RNA polymerase II (Pol II) during starvation and recovery in Caenorhabditis elegans, suggesting that promoter-proximal pausing promotes rapid response to feeding. To test this hypothesis, we measured Pol II elongation genome wide by two complementary approaches and analyzed elongation in conjunction with Pol II binding and expression. We confirmed bona fide pausing during starvation and also discovered Pol II docking. Pausing occurs at active stress-response genes that become downregulated in response to feeding. In contrast, "docked" Pol II accumulates without initiating upstream of inactive growth genes that become rapidly upregulated upon feeding. Beyond differences in function and expression, these two sets of genes have different core promoter motifs, suggesting alternative transcriptional machinery. Our work suggests that growth and stress genes are both regulated postrecruitment during starvation but at initiation and elongation, respectively, coordinating gene expression with nutrient availability.
Resumo:
cERMIT is a computationally efficient motif discovery tool based on analyzing genome-wide quantitative regulatory evidence. Instead of pre-selecting promising candidate sequences, it utilizes information across all sequence regions to search for high-scoring motifs. We apply cERMIT on a range of direct binding and overexpression datasets; it substantially outperforms state-of-the-art approaches on curated ChIP-chip datasets, and easily scales to current mammalian ChIP-seq experiments with data on thousands of non-coding regions.
Resumo:
DNaseI footprinting is an established assay for identifying transcription factor (TF)-DNA interactions with single base pair resolution. High-throughput DNase-seq assays have recently been used to detect in vivo DNase footprints across the genome. Multiple computational approaches have been developed to identify DNase-seq footprints as predictors of TF binding. However, recent studies have pointed to a substantial cleavage bias of DNase and its negative impact on predictive performance of footprinting. To assess the potential for using DNase-seq to identify individual binding sites, we performed DNase-seq on deproteinized genomic DNA and determined sequence cleavage bias. This allowed us to build bias corrected and TF-specific footprint models. The predictive performance of these models demonstrated that predicted footprints corresponded to high-confidence TF-DNA interactions. DNase-seq footprints were absent under a fraction of ChIP-seq peaks, which we show to be indicative of weaker binding, indirect TF-DNA interactions or possible ChIP artifacts. The modeling approach was also able to detect variation in the consensus motifs that TFs bind to. Finally, cell type specific footprints were detected within DNase hypersensitive sites that are present in multiple cell types, further supporting that footprints can identify changes in TF binding that are not detectable using other strategies.
Resumo:
BACKGROUND: Incorporation of multiple enrichment biomarkers into prospective clinical trials is an active area of investigation, but the factors that determine clinical trial enrollment following a molecular prescreening program have not been assessed. PATIENTS AND METHODS: Patients with 5-fluorouracil-refractory metastatic colorectal cancer at the MD Anderson Cancer Center were offered screening in the Assessment of Targeted Therapies Against Colorectal Cancer (ATTACC) program to identify eligibility for companion phase I or II clinical trials with a therapy targeted to an aberration detected in the patient, based on testing by immunohistochemistry, targeted gene sequencing panels, and CpG island methylation phenotype assays. RESULTS: Between August 2010 and December 2013, 484 patients were enrolled, 458 (95%) had a biomarker result, and 157 (32%) were enrolled on a clinical trial (92 on biomarker-selected and 65 on nonbiomarker selected). Of the 458 patients with a biomarker result, enrollment on biomarker-selected clinical trials was ninefold higher for predefined ATTACC-companion clinical trials as opposed to nonpredefined biomarker-selected clinical trials, 17.9% versus 2%, P < 0.001. Factors that correlated positively with trial enrollment in multivariate analysis were higher performance status, older age, lack of standard of care therapy, established patient at MD Anderson, and the presence of an eligible biomarker for an ATTACC-companion study. Early molecular screening did result in a higher rate of patients with remaining standard of care therapy enrolling on ATTACC-companion clinical trials, 45.1%, in contrast to nonpredefined clinical trials, 22.7%; odds ratio 3.1, P = 0.002. CONCLUSIONS: Though early molecular prescreening for predefined clinical trials resulted in an increase rate of trial enrollment of nonrefractory patients, the majority of patients enrolled on clinical trials were refractory to standard of care therapy. Within molecular prescreening programs, tailoring screening for preidentified and open clinical trials, temporally linking screening to treatment and optimizing both patient and physician engagement are efforts likely to improve enrollment on biomarker-selected clinical trials. CLINICAL TRIALS NUMBER: The study NCT number is NCT01196130.
Resumo:
BACKGROUND: Small molecule inhibitors of histone deacetylases (HDACi) hold promise as anticancer agents for particular malignancies. However, clinical use is often confounded by toxicity, perhaps due to indiscriminate hyperacetylation of cellular proteins. Therefore, elucidating the mechanisms by which HDACi trigger differentiation, cell cycle arrest, or apoptosis of cancer cells could inform development of more targeted therapies. We used the myelogenous leukemia line K562 as a model of HDACi-induced differentiation to investigate chromatin accessibility (DNase-seq) and expression (RNA-seq) changes associated with this process. RESULTS: We identified several thousand specific regulatory elements [~10 % of total DNase I-hypersensitive (DHS) sites] that become significantly more or less accessible with sodium butyrate or suberanilohydroxamic acid treatment. Most of the differential DHS sites display hallmarks of enhancers, including being enriched for non-promoter regions, associating with nearby gene expression changes, and increasing luciferase reporter expression in K562 cells. Differential DHS sites were enriched for key hematopoietic lineage transcription factor motifs, including SPI1 (PU.1), a known pioneer factor. We found PU.1 increases binding at opened DHS sites with HDACi treatment by ChIP-seq, but PU.1 knockdown by shRNA fails to block the chromatin accessibility and expression changes. A machine-learning approach indicates H3K27me3 initially marks PU.1-bound sites that open with HDACi treatment, suggesting these sites are epigenetically poised. CONCLUSIONS: We find HDACi treatment of K562 cells results in site-specific chromatin remodeling at epigenetically poised regulatory elements. PU.1 shows evidence of a pioneer role in this process by marking poised enhancers but is not required for transcriptional activation.