2 resultados para Steam-navigation
em Duke University
Resumo:
A new principle of sampling aerosol particles by means of steam injection with the consequent collection of grown droplets has been established. An air stream free of water-soluble gases is rapidly mixed with steam. The resulting supersaturation causes aerosol particles to grow into droplets. The droplets containing dissolved aerosol species are then collected by two cyclones in series. The solution collected in the cyclones is constantly pumped out and can be on- or off-line analysed by means of ion chromatography or flow injection analysis. On the basis of the new sampling principle a prototype of an aerosol sampler was designed which is capable of sampling particles quantitatively down to several nanometres in diameter. The mass sampling efficiency of the instrument was found to be 99\%. The detection limit of the sampler for ammonium, sulphate, nitrate and chloride ions is below 0.7 mu g m(-3). By reduction of an already identified source of contamination, much lower detection limits can be achieved. During measurements the sampler proved to be stable, working without any assistance for extended periods of time. Comparison of the sampler with filter packs during measurements of ambient air aerosols showed that the sampler gives good results.
Resumo:
The foraging activity of many organisms reveal strategic movement patterns, showing efficient use of spatially distributed resources. The underlying mechanisms behind these movement patterns, such as the use of spatial memory, are topics of considerable debate. To augment existing evidence of spatial memory use in primates, we generated movement patterns from simulated primate agents with simple sensory and behavioral capabilities. We developed agents representing various hypotheses of memory use, and compared the movement patterns of simulated groups to those of an observed group of red colobus monkeys (Procolobus rufomitratus), testing for: the effects of memory type (Euclidian or landmark based), amount of memory retention, and the effects of social rules in making foraging choices at the scale of the group (independent or leader led). Our results indicate that red colobus movement patterns fit best with simulated groups that have landmark based memory and a follow the leader foraging strategy. Comparisons between simulated agents revealed that social rules had the greatest impact on a group's step length, whereas the type of memory had the highest impact on a group's path tortuosity and cohesion. Using simulation studies as experimental trials to test theories of spatial memory use allows the development of insight into the behavioral mechanisms behind animal movement, developing case-specific results, as well as general results informing how changes to perception and behavior influence movement patterns.