7 resultados para Statistical Learning

em Duke University


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bayesian methods offer a flexible and convenient probabilistic learning framework to extract interpretable knowledge from complex and structured data. Such methods can characterize dependencies among multiple levels of hidden variables and share statistical strength across heterogeneous sources. In the first part of this dissertation, we develop two dependent variational inference methods for full posterior approximation in non-conjugate Bayesian models through hierarchical mixture- and copula-based variational proposals, respectively. The proposed methods move beyond the widely used factorized approximation to the posterior and provide generic applicability to a broad class of probabilistic models with minimal model-specific derivations. In the second part of this dissertation, we design probabilistic graphical models to accommodate multimodal data, describe dynamical behaviors and account for task heterogeneity. In particular, the sparse latent factor model is able to reveal common low-dimensional structures from high-dimensional data. We demonstrate the effectiveness of the proposed statistical learning methods on both synthetic and real-world data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper explores the effect of credit rating agency’s (CRA) reputation on the discretionary disclosures of corporate bond issuers. Academics, practitioners, and regulators disagree on the informational role played by major CRAs and the usefulness of credit ratings in influencing investors’ perception of the credit risk of bond issuers. Using management earnings forecasts as a measure of discretionary disclosure, I find that investors demand more (less) disclosure from bond issuers when the ratings become less (more) credible. In addition, using content analytics, I find that bond issuers disclose more qualitative information during periods of low CRA reputation to aid investors better assess credit risk. That the corporate managers alter their voluntary disclosure in response to CRA reputation shocks is consistent with credit ratings providing incremental information to investors and reducing adverse selection in lending markets. Overall, my findings suggest that managers rely on voluntary disclosure as a credible mechanism to reduce information asymmetry in bond markets.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Constant technology advances have caused data explosion in recent years. Accord- ingly modern statistical and machine learning methods must be adapted to deal with complex and heterogeneous data types. This phenomenon is particularly true for an- alyzing biological data. For example DNA sequence data can be viewed as categorical variables with each nucleotide taking four different categories. The gene expression data, depending on the quantitative technology, could be continuous numbers or counts. With the advancement of high-throughput technology, the abundance of such data becomes unprecedentedly rich. Therefore efficient statistical approaches are crucial in this big data era.

Previous statistical methods for big data often aim to find low dimensional struc- tures in the observed data. For example in a factor analysis model a latent Gaussian distributed multivariate vector is assumed. With this assumption a factor model produces a low rank estimation of the covariance of the observed variables. Another example is the latent Dirichlet allocation model for documents. The mixture pro- portions of topics, represented by a Dirichlet distributed variable, is assumed. This dissertation proposes several novel extensions to the previous statistical methods that are developed to address challenges in big data. Those novel methods are applied in multiple real world applications including construction of condition specific gene co-expression networks, estimating shared topics among newsgroups, analysis of pro- moter sequences, analysis of political-economics risk data and estimating population structure from genotype data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Currently, no available pathological or molecular measures of tumor angiogenesis predict response to antiangiogenic therapies used in clinical practice. Recognizing that tumor endothelial cells (EC) and EC activation and survival signaling are the direct targets of these therapies, we sought to develop an automated platform for quantifying activity of critical signaling pathways and other biological events in EC of patient tumors by histopathology. Computer image analysis of EC in highly heterogeneous human tumors by a statistical classifier trained using examples selected by human experts performed poorly due to subjectivity and selection bias. We hypothesized that the analysis can be optimized by a more active process to aid experts in identifying informative training examples. To test this hypothesis, we incorporated a novel active learning (AL) algorithm into FARSIGHT image analysis software that aids the expert by seeking out informative examples for the operator to label. The resulting FARSIGHT-AL system identified EC with specificity and sensitivity consistently greater than 0.9 and outperformed traditional supervised classification algorithms. The system modeled individual operator preferences and generated reproducible results. Using the results of EC classification, we also quantified proliferation (Ki67) and activity in important signal transduction pathways (MAP kinase, STAT3) in immunostained human clear cell renal cell carcinoma and other tumors. FARSIGHT-AL enables characterization of EC in conventionally preserved human tumors in a more automated process suitable for testing and validating in clinical trials. The results of our study support a unique opportunity for quantifying angiogenesis in a manner that can now be tested for its ability to identify novel predictive and response biomarkers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The percentage of subjects recalling each unit in a list or prose passage is considered as a dependent measure. When the same units are recalled in different tasks, processing is assumed to be the same; when different units are recalled, processing is assumed to be different. Two collections of memory tasks are presented, one for lists and one for prose. The relations found in these two collections are supported by an extensive reanalysis of the existing prose memory literature. The same set of words were learned by 13 different groups of subjects under 13 different conditions. Included were intentional free-recall tasks, incidental free recall following lexical decision, and incidental free recall following ratings of orthographic distinctiveness and emotionality. Although the nine free-recall tasks varied widely with regard to the amount of recall, the relative probability of recall for the words was very similar among the tasks. Imagery encoding and recognition produced relative probabilities of recall that were different from each other and from the free-recall tasks. Similar results were obtained with a prose passage. A story was learned by 13 different groups of subjects under 13 different conditions. Eight free-recall tasks, which varied with respect to incidental or intentional learning, retention interval, and the age of the subjects, produced similar relative probabilities of recall, whereas recognition and prompted recall produced relative probabilities of recall that were different from each other and from the free-recall tasks. A review of the prose literature was undertaken to test the generality of these results. Analysis of variance is the most common statistical procedure in this literature. If the relative probability of recall of units varied across conditions, a units by condition interaction would be expected. For the 12 studies that manipulated retention interval, an average of 21% of the variance was accounted for by the main effect of retention interval, 17% by the main effect of units, and only 2% by the retention interval by units interaction. Similarly, for the 12 studies that varied the age of the subjects, 6% of the variance was accounted for by the main effect of age, 32% by the main effect of units, and only 1% by the interaction of age by units.(ABSTRACT TRUNCATED AT 400 WORDS)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work explores the use of statistical methods in describing and estimating camera poses, as well as the information feedback loop between camera pose and object detection. Surging development in robotics and computer vision has pushed the need for algorithms that infer, understand, and utilize information about the position and orientation of the sensor platforms when observing and/or interacting with their environment.

The first contribution of this thesis is the development of a set of statistical tools for representing and estimating the uncertainty in object poses. A distribution for representing the joint uncertainty over multiple object positions and orientations is described, called the mirrored normal-Bingham distribution. This distribution generalizes both the normal distribution in Euclidean space, and the Bingham distribution on the unit hypersphere. It is shown to inherit many of the convenient properties of these special cases: it is the maximum-entropy distribution with fixed second moment, and there is a generalized Laplace approximation whose result is the mirrored normal-Bingham distribution. This distribution and approximation method are demonstrated by deriving the analytical approximation to the wrapped-normal distribution. Further, it is shown how these tools can be used to represent the uncertainty in the result of a bundle adjustment problem.

Another application of these methods is illustrated as part of a novel camera pose estimation algorithm based on object detections. The autocalibration task is formulated as a bundle adjustment problem using prior distributions over the 3D points to enforce the objects' structure and their relationship with the scene geometry. This framework is very flexible and enables the use of off-the-shelf computational tools to solve specialized autocalibration problems. Its performance is evaluated using a pedestrian detector to provide head and foot location observations, and it proves much faster and potentially more accurate than existing methods.

Finally, the information feedback loop between object detection and camera pose estimation is closed by utilizing camera pose information to improve object detection in scenarios with significant perspective warping. Methods are presented that allow the inverse perspective mapping traditionally applied to images to be applied instead to features computed from those images. For the special case of HOG-like features, which are used by many modern object detection systems, these methods are shown to provide substantial performance benefits over unadapted detectors while achieving real-time frame rates, orders of magnitude faster than comparable image warping methods.

The statistical tools and algorithms presented here are especially promising for mobile cameras, providing the ability to autocalibrate and adapt to the camera pose in real time. In addition, these methods have wide-ranging potential applications in diverse areas of computer vision, robotics, and imaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spectral CT using a photon counting x-ray detector (PCXD) shows great potential for measuring material composition based on energy dependent x-ray attenuation. Spectral CT is especially suited for imaging with K-edge contrast agents to address the otherwise limited contrast in soft tissues. We have developed a micro-CT system based on a PCXD. This system enables full spectrum CT in which the energy thresholds of the PCXD are swept to sample the full energy spectrum for each detector element and projection angle. Measurements provided by the PCXD, however, are distorted due to undesirable physical eects in the detector and are very noisy due to photon starvation. In this work, we proposed two methods based on machine learning to address the spectral distortion issue and to improve the material decomposition. This rst approach is to model distortions using an articial neural network (ANN) and compensate for the distortion in a statistical reconstruction. The second approach is to directly correct for the distortion in the projections. Both technique can be done as a calibration process where the neural network can be trained using 3D printed phantoms data to learn the distortion model or the correction model of the spectral distortion. This replaces the need for synchrotron measurements required in conventional technique to derive the distortion model parametrically which could be costly and time consuming. The results demonstrate experimental feasibility and potential advantages of ANN-based distortion modeling and correction for more accurate K-edge imaging with a PCXD. Given the computational eciency with which the ANN can be applied to projection data, the proposed scheme can be readily integrated into existing CT reconstruction pipelines.