4 resultados para Stabilization techniques
em Duke University
Resumo:
Wg/Wnt signals specify cell fates in both invertebrate and vertebrate embryos and maintain stem-cell populations in many adult tissues. Deregulation of the Wnt pathway can transform cells to a proliferative fate, leading to cancer. We have discovered that two Drosophila proteins that are crucial for cytokinesis have a second, largely independent, role in restricting activity of the Wnt pathway. The fly homolog of RacGAP1, Tumbleweed (Tum)/RacGAP50C, and its binding partner, the kinesin-like protein Pavarotti (Pav), negatively regulate Wnt activity in fly embryos and in cultured mammalian cells. Unlike many known regulators of the Wnt pathway, these molecules do not affect stabilization of Arm/beta-catenin (betacat), the principal effector molecule in Wnt signal transduction. Rather, they appear to act downstream of betacat stabilization to control target-gene transcription. Both Tum and Pav accumulate in the nuclei of interphase cells, a location that is spatially distinct from their cleavage-furrow localization during cytokinesis. We show that this nuclear localization is essential for their role in Wnt regulation. Thus, we have identified two modulators of the Wnt pathway that have shared functions in cell division, which hints at a possible link between cytokinesis and Wnt activity during tumorigenesis.
Resumo:
We demonstrate that fluid flow cloaking solutions, based on active hydrodynamic metamaterials, exist for two-dimensional flows past a cylinder in a wide range of Reynolds numbers (Re's), up to approximately 200. Within the framework of the classical Brinkman equation for homogenized porous flow, we demonstrate using two different methods that such cloaked flows can be dynamically stable for Re's in the range of 5-119. The first highly efficient method is based on a linearization of the Brinkman-Navier-Stokes equation and finding the eigenfrequencies of the least stable eigenperturbations; the second method is a direct numerical integration in the time domain. We show that, by suppressing the von Kármán vortex street in the weakly turbulent wake, porous flow cloaks can raise the critical Reynolds number up to about 120 or five times greater than for a bare uncloaked cylinder. © 2012 American Physical Society.
Resumo:
Anesthesia providers in low-income countries may infrequently provide regional anesthesia techniques for obstetrics due to insufficient training and supplies, limited manpower, and a lack of perceived need. In 2007, Kybele, Inc. began a 5-year collaboration in Ghana to improve obstetric anesthesia services. A program was designed to teach spinal anesthesia for cesarean delivery and spinal labor analgesia at Ridge Regional Hospital, Accra, the second largest obstetric unit in Ghana. The use of spinal anesthesia for cesarean delivery increased significantly from 6% in 2006 to 89% in 2009. By 2012, >90% of cesarean deliveries were conducted with spinal anesthesia, despite a doubling of the number performed. A trial of spinal labor analgesia was assessed in a small cohort of parturients with minimal complications; however, protocol deviations were observed. Although subsequent efforts to provide spinal analgesia in the labor ward were hampered by anesthesia provider shortages, spinal anesthesia for cesarean delivery proved to be practical and sustainable.