4 resultados para Spectral Analysis.

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This article examines the behavior of equity trading volume and volatility for the individual firms composing the Standard & Poor's 100 composite index. Using multivariate spectral methods, we find that fractionally integrated processes best describe the long-run temporal dependencies in both series. Consistent with a stylized mixture-of-distributions hypothesis model in which the aggregate "news"-arrival process possesses long-memory characteristics, the long-run hyperbolic decay rates appear to be common across each volume-volatility pair.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As many as 20-70% of patients undergoing breast conserving surgery require repeat surgeries due to a close or positive surgical margin diagnosed post-operatively [1]. Currently there are no widely accepted tools for intra-operative margin assessment which is a significant unmet clinical need. Our group has developed a first-generation optical visible spectral imaging platform to image the molecular composition of breast tumor margins and has tested it clinically in 48 patients in a previously published study [2]. The goal of this paper is to report on the performance metrics of the system and compare it to clinical criteria for intra-operative tumor margin assessment. The system was found to have an average signal to noise ratio (SNR) >100 and <15% error in the extraction of optical properties indicating that there is sufficient SNR to leverage the differences in optical properties between negative and close/positive margins. The probe had a sensing depth of 0.5-2.2 mm over the wavelength range of 450-600 nm which is consistent with the pathologic criterion for clear margins of 0-2 mm. There was <1% cross-talk between adjacent channels of the multi-channel probe which shows that multiple sites can be measured simultaneously with negligible cross-talk between adjacent sites. Lastly, the system and measurement procedure were found to be reproducible when evaluated with repeated measures, with a low coefficient of variation (<0.11). The only aspect of the system not optimized for intra-operative use was the imaging time. The manuscript includes a discussion of how the speed of the system can be improved to work within the time constraints of an intra-operative setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ability of diffuse reflectance spectroscopy to extract quantitative biological composition of tissues has been used to discern tissue types in both pre-clinical and clinical cancer studies. Typically, diffuse reflectance spectroscopy systems are designed for single-point measurements. Clinically, an imaging system would provide valuable spatial information on tissue composition. While it is feasible to build a multiplexed fiber-optic probe based spectral imaging system, these systems suffer from drawbacks with respect to cost and size. To address these we developed a compact and low cost system using a broadband light source with an 8-slot filter wheel for illumination and silicon photodiodes for detection. The spectral imaging system was tested on a set of tissue mimicking liquid phantoms which yielded an optical property extraction accuracy of 6.40 +/- 7.78% for the absorption coefficient (micro(a)) and 11.37 +/- 19.62% for the wavelength-averaged reduced scattering coefficient (micro(s)').