3 resultados para Special education policy
em Duke University
Resumo:
Current U.S. policy initiatives to improve the U.S. education system, including No Child Left Behind, test-based evaluation of teachers, and the promotion of competition are misguided because they either deny or set to the side a basic body of evidence documenting that students from disadvantaged households on average perform less well in school than those from more advantaged families. Because these policy initiatives do not directly address the educational challenges experienced by disadvantaged students, they have contributed little-and are not likely to contribute much in the future-to raising overall student achievement or to reducing achievement and educational attainment gaps between advantaged and disadvantaged students. Moreover, such policies have the potential to do serious harm. Addressing the educational challenges faced by children from disadvantaged families will require a broader and bolder approach to education policy than the recent efforts to reform schools. © 2012 by the Association for Public Policy Analysis and Management.
Resumo:
In this dissertation, I explore the impact of several public policies on civic participation. Using a unique combination of school administrative and public–use voter files and methods for causal inference, I evaluate the impact of three new, as of yet unexplored, policies: one informational, one institutional, and one skill–based. Chapter 2 examines the causal effect of No Child Left Behind’s performance-based accountability school failure signals on turnout in school board elections and on individuals’ use of exit. I find that failure signals mobilize citizens both at the ballot box and by encouraging them to vote with their feet. However, these increases in voice and exit come primarily from citizens who already active—thus exacerbating inequalities in both forms of participation. Chapter 3 examines the causal effect of preregistration—an electoral reform that allows young citizens to enroll in the electoral system before turning 18, while also providing them with various in-school supports. Using data from the Current Population Survey and Florida Voter Files and multiple methods for causal inference, I (with my coauthor listed below) show that preregistration mobilizes and does so for a diverse set of citizens. Finally, Chapter 4 examines the impact of psychosocial or so called non-cognitive skills on voter turnout. Using information from the Fast Track intervention, I show that early– childhood investments in psychosocial skills have large, long-run spillovers on civic participation. These gains are widely distributed, being especially large for those least likely to participate. These chapters provide clear insights that reach across disciplinary boundaries and speak to current policy debates. In placing specific attention not only on whether these programs mobilize, but also on who they mobilize, I provide scholars and practitioners with new ways of thinking about how to address stubbornly low and unequal rates of citizen engagement.
Resumo:
Empirical studies of education programs and systems, by nature, rely upon use of student outcomes that are measurable. Often, these come in the form of test scores. However, in light of growing evidence about the long-run importance of other student skills and behaviors, the time has come for a broader approach to evaluating education. This dissertation undertakes experimental, quasi-experimental, and descriptive analyses to examine social, behavioral, and health-related mechanisms of the educational process. My overarching research question is simply, which inside- and outside-the-classroom features of schools and educational interventions are most beneficial to students in the long term? Furthermore, how can we apply this evidence toward informing policy that could effectively reduce stark social, educational, and economic inequalities?
The first study of three assesses mechanisms by which the Fast Track project, a randomized intervention in the early 1990s for high-risk children in four communities (Durham, NC; Nashville, TN; rural PA; and Seattle, WA), reduced delinquency, arrests, and health and mental health service utilization in adolescence through young adulthood (ages 12-20). A decomposition of treatment effects indicates that about a third of Fast Track’s impact on later crime outcomes can be accounted for by improvements in social and self-regulation skills during childhood (ages 6-11), such as prosocial behavior, emotion regulation and problem solving. These skills proved less valuable for the prevention of mental and physical health problems.
The second study contributes new evidence on how non-instructional investments – such as increased spending on school social workers, guidance counselors, and health services – affect multiple aspects of student performance and well-being. Merging several administrative data sources spanning the 1996-2013 school years in North Carolina, I use an instrumental variables approach to estimate the extent to which local expenditure shifts affect students’ academic and behavioral outcomes. My findings indicate that exogenous increases in spending on non-instructional services not only reduce student absenteeism and disciplinary problems (important predictors of long-term outcomes) but also significantly raise student achievement, in similar magnitude to corresponding increases in instructional spending. Furthermore, subgroup analyses suggest that investments in student support personnel such as social workers, health services, and guidance counselors, in schools with concentrated low-income student populations could go a long way toward closing socioeconomic achievement gaps.
The third study examines individual pathways that lead to high school graduation or dropout. It employs a variety of machine learning techniques, including decision trees, random forests with bagging and boosting, and support vector machines, to predict student dropout using longitudinal administrative data from North Carolina. I consider a large set of predictor measures from grades three through eight including academic achievement, behavioral indicators, and background characteristics. My findings indicate that the most important predictors include eighth grade absences, math scores, and age-for-grade as well as early reading scores. Support vector classification (with a high cost parameter and low gamma parameter) predicts high school dropout with the highest overall validity in the testing dataset at 90.1 percent followed by decision trees with boosting and interaction terms at 89.5 percent.