2 resultados para Southeast Florida
em Duke University
Resumo:
There is growing evidence that organo-nitrogen compounds may constitute a significant fraction of the aerosol nitrogen (N) budget. However, very little is known about the abundance and origin of this aerosol fraction. In this study, the concentration of organic nitrogen (ON) and major inorganic ions in PM2.5 aerosol were measured at the Duke Forest Research Facility near Chapel Hill, NC, during January and June of 2007. A novel on-line instrument was used, which is based on the Steam Jet Aerosol Collector (SJAC) coupled to an on-line total carbon/total nitrogen analyzer and two on-line ion chromatographs. The concentration of ON was determined by tracking the difference in concentrations of total nitrogen and of inorganic nitrogen (determined as the sum of N-ammonium and N-nitrate). The time resolution of the instrument was 30 min with a detection limit for major aerosol components of ∼0.1 mu;gm-3. Nitrogen in organic compounds contributed ∼33% on average to the total nitrogen concentration in PM2.5, illustrating the importance of this aerosol component. Absolute concentrations of ON, however, were relatively low (lt;1.0 mu;gm-3) with an average of 0.16 mu;gm-3. The absolute and relative contribution of ON to the total aerosol nitrogen budget was practically the same in January and June. In January, the concentration of ON tended to be higher during the night and early morning, while in June it tended to be higher during the late afternoon and evening. Back-trajectories and correlation with wind direction indicate that higher concentrations of ON occur in air masses originating over the continental US, while marine air masses are characterized by lower ON concentrations. The data presented in this study suggests that ON has a variety of sources, which are very difficult to quantify without information on chemical composition of this important aerosol fraction.
Resumo:
Using a natural gradient of dissolved organic carbon (DOC) source and concentration in rivers of northern Florida, we investigated how terrestrially-derived DOC affects denitrification rates in river sediments. Specifically, we examined if the higher concentrations of DOC in blackwater rivers stimulate denitrification, or whether such terrestrially-derived DOC supports lower denitrification rates because (1) it is less labile than DOC from aquatic primary production; whether (2) terrestrial DOC directly inhibits denitrification via biochemical mechanisms; and/or whether (3) terrestrial DOC indirectly inhibits denitrification via reduced light availability to-and thus DOC exudation by-aquatic primary producers. We differentiated among these mechanisms using laboratory denitrification assays that subjected river sediments to factorial amendments of NO3- and dextrose, humic acid dosing, and cross-incubations of sediments and water from different river sources. DOC from terrestrial sources neither depressed nor stimulated denitrification rates, indicating low lability of this DOC but no direct inhibition; humic acid additions similarly did not affect denitrification rates. However, responses to addition of labile C increased with long-term average DOC concentration, which supports the hypothesis that terrestrial DOC indirectly inhibits denitrification via decreased autochthonous production. Observed and future changes in DOC concentration may therefore reduce the ability of inland waterways to remove reactive nitrogen. © 2013 Springer Science+Business Media New York.