6 resultados para Source of influence
em Duke University
Resumo:
Periods of drought and low streamflow can have profound impacts on both human and natural systems. People depend on a reliable source of water for numerous reasons including potable water supply and to produce economic value through agriculture or energy production. Aquatic ecosystems depend on water in addition to the economic benefits they provide to society through ecosystem services. Given that periods of low streamflow may become more extreme and frequent in the future, it is important to study the factors that control water availability during these times. In the absence of precipitation the slower hydrological response of groundwater systems will play an amplified role in water supply. Understanding the variability of the fraction of streamflow contribution from baseflow or groundwater during periods of drought provides insight into what future water availability may look like and how it can best be managed. The Mills River Basin in North Carolina is chosen as a case-study to test this understanding. First, obtaining a physically meaningful estimation of baseflow from USGS streamflow data via computerized hydrograph analysis techniques is carried out. Then applying a method of time series analysis including wavelet analysis can highlight signals of non-stationarity and evaluate the changes in variance required to better understand the natural variability of baseflow and low flows. In addition to natural variability, human influence must be taken into account in order to accurately assess how the combined system reacts to periods of low flow. Defining a combined demand that consists of both natural and human demand allows us to be more rigorous in assessing the level of sustainable use of a shared resource, in this case water. The analysis of baseflow variability can differ based on regional location and local hydrogeology, but it was found that baseflow varies from multiyear scales such as those associated with ENSO (3.5, 7 years) up to multi decadal time scales, but with most of the contributing variance coming from decadal or multiyear scales. It was also found that the behavior of baseflow and subsequently water availability depends a great deal on overall precipitation, the tracks of hurricanes or tropical storms and associated climate indices, as well as physiography and hydrogeology. Evaluating and utilizing the Duke Combined Hydrology Model (DCHM), reasonably accurate estimates of streamflow during periods of low flow were obtained in part due to the model’s ability to capture subsurface processes. Being able to accurately simulate streamflow levels and subsurface interactions during periods of drought can be very valuable to water suppliers, decision makers, and ultimately impact citizens. Knowledge of future droughts and periods of low flow in addition to tracking customer demand will allow for better management practices on the part of water suppliers such as knowing when they should withdraw more water during a surplus so that the level of stress on the system is minimized when there is not ample water supply.
Resumo:
The Laws is generally regarded as Plato’s attempt to engage with the practical realities of political life, as opposed to the more idealistic, or utopian, vision of the Republic. Yet modern scholars have often felt disquieted at the central role of religion in the Laws’ second-best city and regime. There are essentially the two dominant interpretations on offer today: either religion supports a repressive theocracy, which controls every aspect of the citizens’ lives to such an extent that even philosophy itself is discouraged, or religion is an example of the kind of noble lie, which the philosopher must deceive the citizens into believing—viz., that a god, not a man, is the author of the regime’s laws. I argue that neither of these interpretations do justice to the dialogue’s intricately dramatic structure, and therefore to Plato’s treatment of civil religion. What I propose is a third position in which Plato both takes seriously the social and political utility of religion, and views theology as a legitimate, and even necessary, subject of philosophical inquiry without going so far as to advocate theocracy as the second best form of regime.
I conclude that a proper focus on the dialogue form, combined with a careful historical analysis of Plato’s use of social and political institutions, reveals an innovative yet traditional form of civil religion, purified of the harmful influence of the poets, based on the authority of the oracle at Delphi, and grounded on a philosophical conception of god as the eternal source of order, wisdom, and all that is good. Through a union of traditional Delphic theology and Platonic natural theology, Plato gives the city of the Laws a common cult acceptable to philosopher and non-philosopher alike, and thus, not only bridges the gap between religion and philosophy, but also creates a sense of community, political identity, and social harmony—the prerequisites for political order and stability. The political theology of the Laws, therefore, provides a rational defense of the rule of law (νόμος) re-conceived as the application of divine Reason (νοῦς) to human affairs.
Resumo:
Optical coherence tomography (OCT) is a noninvasive three-dimensional interferometric imaging technique capable of achieving micrometer scale resolution. It is now a standard of care in ophthalmology, where it is used to improve the accuracy of early diagnosis, to better understand the source of pathophysiology, and to monitor disease progression and response to therapy. In particular, retinal imaging has been the most prevalent clinical application of OCT, but researchers and companies alike are developing OCT systems for cardiology, dermatology, dentistry, and many other medical and industrial applications.
Adaptive optics (AO) is a technique used to reduce monochromatic aberrations in optical instruments. It is used in astronomical telescopes, laser communications, high-power lasers, retinal imaging, optical fabrication and microscopy to improve system performance. Scanning laser ophthalmoscopy (SLO) is a noninvasive confocal imaging technique that produces high contrast two-dimensional retinal images. AO is combined with SLO (AOSLO) to compensate for the wavefront distortions caused by the optics of the eye, providing the ability to visualize the living retina with cellular resolution. AOSLO has shown great promise to advance the understanding of the etiology of retinal diseases on a cellular level.
Broadly, we endeavor to enhance the vision outcome of ophthalmic patients through improved diagnostics and personalized therapy. Toward this end, the objective of the work presented herein was the development of advanced techniques for increasing the imaging speed, reducing the form factor, and broadening the versatility of OCT and AOSLO. Despite our focus on applications in ophthalmology, the techniques developed could be applied to other medical and industrial applications. In this dissertation, a technique to quadruple the imaging speed of OCT was developed. This technique was demonstrated by imaging the retinas of healthy human subjects. A handheld, dual depth OCT system was developed. This system enabled sequential imaging of the anterior segment and retina of human eyes. Finally, handheld SLO/OCT systems were developed, culminating in the design of a handheld AOSLO system. This system has the potential to provide cellular level imaging of the human retina, resolving even the most densely packed foveal cones.
Resumo:
Human activities represent a significant burden on the global water cycle, with large and increasing demands placed on limited water resources by manufacturing, energy production and domestic water use. In addition to changing the quantity of available water resources, human activities lead to changes in water quality by introducing a large and often poorly-characterized array of chemical pollutants, which may negatively impact biodiversity in aquatic ecosystems, leading to impairment of valuable ecosystem functions and services. Domestic and industrial wastewaters represent a significant source of pollution to the aquatic environment due to inadequate or incomplete removal of chemicals introduced into waters by human activities. Currently, incomplete chemical characterization of treated wastewaters limits comprehensive risk assessment of this ubiquitous impact to water. In particular, a significant fraction of the organic chemical composition of treated industrial and domestic wastewaters remains uncharacterized at the molecular level. Efforts aimed at reducing the impacts of water pollution on aquatic ecosystems critically require knowledge of the composition of wastewaters to develop interventions capable of protecting our precious natural water resources.
The goal of this dissertation was to develop a robust, extensible and high-throughput framework for the comprehensive characterization of organic micropollutants in wastewaters by high-resolution accurate-mass mass spectrometry. High-resolution mass spectrometry provides the most powerful analytical technique available for assessing the occurrence and fate of organic pollutants in the water cycle. However, significant limitations in data processing, analysis and interpretation have limited this technique in achieving comprehensive characterization of organic pollutants occurring in natural and built environments. My work aimed to address these challenges by development of automated workflows for the structural characterization of organic pollutants in wastewater and wastewater impacted environments by high-resolution mass spectrometry, and to apply these methods in combination with novel data handling routines to conduct detailed fate studies of wastewater-derived organic micropollutants in the aquatic environment.
In Chapter 2, chemoinformatic tools were implemented along with novel non-targeted mass spectrometric analytical methods to characterize, map, and explore an environmentally-relevant “chemical space” in municipal wastewater. This was accomplished by characterizing the molecular composition of known wastewater-derived organic pollutants and substances that are prioritized as potential wastewater contaminants, using these databases to evaluate the pollutant-likeness of structures postulated for unknown organic compounds that I detected in wastewater extracts using high-resolution mass spectrometry approaches. Results showed that application of multiple computational mass spectrometric tools to structural elucidation of unknown organic pollutants arising in wastewaters improved the efficiency and veracity of screening approaches based on high-resolution mass spectrometry. Furthermore, structural similarity searching was essential for prioritizing substances sharing structural features with known organic pollutants or industrial and consumer chemicals that could enter the environment through use or disposal.
I then applied this comprehensive methodological and computational non-targeted analysis workflow to micropollutant fate analysis in domestic wastewaters (Chapter 3), surface waters impacted by water reuse activities (Chapter 4) and effluents of wastewater treatment facilities receiving wastewater from oil and gas extraction activities (Chapter 5). In Chapter 3, I showed that application of chemometric tools aided in the prioritization of non-targeted compounds arising at various stages of conventional wastewater treatment by partitioning high dimensional data into rational chemical categories based on knowledge of organic chemical fate processes, resulting in the classification of organic micropollutants based on their occurrence and/or removal during treatment. Similarly, in Chapter 4, high-resolution sampling and broad-spectrum targeted and non-targeted chemical analysis were applied to assess the occurrence and fate of organic micropollutants in a water reuse application, wherein reclaimed wastewater was applied for irrigation of turf grass. Results showed that organic micropollutant composition of surface waters receiving runoff from wastewater irrigated areas appeared to be minimally impacted by wastewater-derived organic micropollutants. Finally, Chapter 5 presents results of the comprehensive organic chemical composition of oil and gas wastewaters treated for surface water discharge. Concurrent analysis of effluent samples by complementary, broad-spectrum analytical techniques, revealed that low-levels of hydrophobic organic contaminants, but elevated concentrations of polymeric surfactants, which may effect the fate and analysis of contaminants of concern in oil and gas wastewaters.
Taken together, my work represents significant progress in the characterization of polar organic chemical pollutants associated with wastewater-impacted environments by high-resolution mass spectrometry. Application of these comprehensive methods to examine micropollutant fate processes in wastewater treatment systems, water reuse environments, and water applications in oil/gas exploration yielded new insights into the factors that influence transport, transformation, and persistence of organic micropollutants in these systems across an unprecedented breadth of chemical space.
Resumo:
BACKGROUND: Attention-deficit/hyperactivity disorder (ADHD) is a risk factor for problematic cannabis use. However, clinical and anecdotal evidence suggest an increasingly popular perception that cannabis is therapeutic for ADHD, including via online resources. Given that the Internet is increasingly utilized as a source of healthcare information and may influence perceptions, we conducted a qualitative analysis of online forum discussions, also referred to as threads, on the effects of cannabis on ADHD to systematically characterize the content patients and caregivers may encounter about ADHD and cannabis. METHODS: A total of 268 separate forum threads were identified. Twenty percent (20%) were randomly selected, which yielded 55 separate forum threads (mean number of individual posts per forum thread = 17.53) scored by three raters (Cohen's kappa = 0.74). A final sample of 401 posts in these forum threads received at least one endorsement on predetermined topics following qualitative coding procedures. RESULTS: Twenty-five (25%) percent of individual posts indicated that cannabis is therapeutic for ADHD, as opposed to 8% that it is harmful, 5% that it is both therapeutic and harmful, and 2% that it has no effect on ADHD. This pattern was generally consistent when the year of each post was considered. The greater endorsement of therapeutic versus harmful effects of cannabis did not generalize to mood, other (non-ADHD) psychiatric conditions, or overall domains of daily life. Additional themes emerged (e.g., cannabis being considered sanctioned by healthcare providers). CONCLUSIONS: Despite that there are no clinical recommendations or systematic research supporting the beneficial effects of cannabis use for ADHD, online discussions indicate that cannabis is considered therapeutic for ADHD-this is the first study to identify such a trend. This type of online information could shape ADHD patient and caregiver perceptions, and influence cannabis use and clinical care.