6 resultados para Songs, Hawaiian.
em Duke University
Resumo:
Sound is a key sensory modality for Hawaiian spinner dolphins. Like many other marine animals, these dolphins rely on sound and their acoustic environment for many aspects of their daily lives, making it is essential to understand soundscape in areas that are critical to their survival. Hawaiian spinner dolphins rest during the day in shallow coastal areas and forage offshore at night. In my dissertation I focus on the soundscape of the bays where Hawaiian spinner dolphins rest taking a soundscape ecology approach. I primarily relied on passive acoustic monitoring using four DSG-Ocean acoustic loggers in four Hawaiian spinner dolphin resting bays on the Kona Coast of Hawai‛i Island. 30-second recordings were made every four minutes in each of the bays for 20 to 27 months between January 8, 2011 and March 30, 2013. I also utilized concomitant vessel-based visual surveys in the four bays to provide context for these recordings. In my first chapter I used the contributions of the dolphins to the soundscape to monitor presence in the bays and found the degree of presence varied greatly from less than 40% to nearly 90% of days monitored with dolphins present. Having established these bays as important to the animals, in my second chapter I explored the many components of their resting bay soundscape and evaluated the influence of natural and human events on the soundscape. I characterized the overall soundscape in each of the four bays, used the tsunami event of March 2011 to approximate a natural soundscape and identified all loud daytime outliers. Overall, sound levels were consistently louder at night and quieter during the daytime due to the sounds from snapping shrimp. In fact, peak Hawaiian spinner dolphin resting time co-occurs with the quietest part of the day. However, I also found that humans drastically alter this daytime soundscape with sound from offshore aquaculture, vessel sound and military mid-frequency active sonar. During one recorded mid-frequency active sonar event in August 2011, sound pressure levels in the 3.15 kHz 1/3rd-octave band were as high as 45.8 dB above median ambient noise levels. Human activity both inside (vessels) and outside (sonar and aquaculture) the bays significantly altered the resting bay soundscape. Inside the bays there are high levels of human activity including vessel-based tourism directly targeting the dolphins. The interactions between humans and dolphins in their resting bays are of concern; therefore, my third chapter aimed to assess the acoustic response of the dolphins to human activity. Using days where acoustic recordings overlapped with visual surveys I found the greatest response in a bay with dolphin-centric activities, not in the bay with the most vessel activity, indicating that it is not the magnitude that elicits a response but the focus of the activity. In my fourth chapter I summarize the key results from my first three chapters to illustrate the power of multiple site design to prioritize action to protect Hawaiian spinner dolphins in their resting bays, a chapter I hope will be useful for managers should they take further action to protect the dolphins.
Resumo:
Humans and song-learning birds communicate acoustically using learned vocalizations. The characteristic features of this social communication behavior include vocal control by forebrain motor areas, a direct cortical projection to brainstem vocal motor neurons, and dependence on auditory feedback to develop and maintain learned vocalizations. These features have so far not been found in closely related primate and avian species that do not learn vocalizations. Male mice produce courtship ultrasonic vocalizations with acoustic features similar to songs of song-learning birds. However, it is assumed that mice lack a forebrain system for vocal modification and that their ultrasonic vocalizations are innate. Here we investigated the mouse song system and discovered that it includes a motor cortex region active during singing, that projects directly to brainstem vocal motor neurons and is necessary for keeping song more stereotyped and on pitch. We also discovered that male mice depend on auditory feedback to maintain some ultrasonic song features, and that sub-strains with differences in their songs can match each other's pitch when cross-housed under competitive social conditions. We conclude that male mice have some limited vocal modification abilities with at least some neuroanatomical features thought to be unique to humans and song-learning birds. To explain our findings, we propose a continuum hypothesis of vocal learning.
Resumo:
In 2005, Holy and Guo advanced the idea that male mice produce ultrasonic vocalizations (USV) with some features similar to courtship songs of songbirds. Since then, studies showed that male mice emit USV songs in different contexts (sexual and other) and possess a multisyllabic repertoire. Debate still exists for and against plasticity in their vocalizations. But the use of a multisyllabic repertoire can increase potential flexibility and information, in how elements are organized and recombined, namely syntax. In many bird species, modulating song syntax has ethological relevance for sexual behavior and mate preferences. In this study we exposed adult male mice to different social contexts and developed a new approach of analyzing their USVs based on songbird syntax analysis. We found that male mice modify their syntax, including specific sequences, length of sequence, repertoire composition, and spectral features, according to stimulus and social context. Males emit longer and simpler syllables and sequences when singing to females, but more complex syllables and sequences in response to fresh female urine. Playback experiments show that the females prefer the complex songs over the simpler ones. We propose the complex songs are to lure females in, whereas the directed simpler sequences are used for direct courtship. These results suggest that although mice have a much more limited ability of song modification, they could still be used as animal models for understanding some vocal communication features that songbirds are used for.
Resumo:
Very long-term memory for popular music was investigated. Older and younger adults listened to 20-sec excerpts of popular songs drawn from across the 20th century. The subjects gave emotionality and preference ratings and tried to name the title, artist, and year of popularity for each excerpt. They also performed a cued memory test for the lyrics. The older adults' emotionality ratings were highest for songs from their youth; they remembered more about these songs, as well. However, the stimuli failed to cue many autobiographical memories of specific events. Further analyses revealed that the older adults were less likely than the younger adults to retrieve multiple attributes of a song together (i.e., title and artist) and that there was a significant positive correlation between emotion and memory, especially for the older adults. These results have implications for research on long-term memory, as well as on the relationship between emotion and memory.
Resumo:
Seventy-six undergraduates were given the titles and first lines of Beatles' songs and asked to recall the songs. Seven hundred and four different undergraduates were cued with one line from each of 25 Beatles' songs and asked to recall the title. The probability of recalling a line was best predicted by the number of times a line was repeated in the song and how early the line first appeared in the song. The probability of cuing to the title was best predicted by whether the line shared words with the title. Although the subjects recalled only 21% of the lines, there were very few errors in recall, and the errors rarely violated the rhythmic, poetic, or thematic constraints of the songs. Acting together, these constraints can account for the near verbatim recall observed. Fourteen subjects, who transcribed one song, made fewer and different errors than the subjects who had recalled the song, indicating that the errors in recall were not primarily the result of errors in encoding.
Resumo:
Due to changes in cannabis policies, concerns about cannabis use (CU) in adolescents have increased. The population of nonwhite groups is growing quickly in the United States. We examined perceived CU norms and their association with CU and CU disorder (CUD) for White, Black, Hispanic, Native-American, Asian-American, Native Hawaiian/Pacific Islander (NH/PI), and mixed-race adolescents. Data were from adolescents (12-17 years) in the 2004-2012 National Surveys on Drug Use and Health (N = 163,837). Substance use and CUD were assessed by computer-assisted, self-interviewing methods. Blacks, Hispanics, Native-Americans, and mixed-race adolescents had greater odds of past-year CU and CUD than Whites. Among past-year cannabis users (CUs), Hispanics and Native-Americans had greater odds of having a CUD than Whites. Asian-Americans had the highest prevalence of perceived parental or close friends' CU disapproval. Native-Americans and mixed-race adolescents had lower odds than Whites of perceiving CU disapproval from parents or close friends. In adjusted analyses, adolescent's disapproval of CU, as well as perceived disapproval by parents or close friends, were associated with a decreased odds of CU in each racial/ethnic group, except for NHs/PIs. Adolescent's disapproval of CU was associated with a decreased odds of CUD among CUs for Whites (personal, parental, and close friends' disapproval), Hispanics (personal, parental, and close friends' disapproval), and mixed-race adolescents (personal, close friends' disapproval). Racial/ethnic differences in adolescent CU prevalence were somewhat consistent with adolescents' reports of CU norm patterns. Longitudinal research on CU health effects should oversample nonwhite adolescents to assure an adequate sample for analysis and reporting.