6 resultados para Solvent Accessibility

em Duke University


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Described here is a mass spectrometry-based screening assay for the detection of protein-ligand binding interactions in multicomponent protein mixtures. The assay utilizes an oxidation labeling protocol that involves using hydrogen peroxide to selectively oxidize methionine residues in proteins in order to probe the solvent accessibility of these residues as a function of temperature. The extent to which methionine residues in a protein are oxidized after specified reaction times at a range of temperatures is determined in a MALDI analysis of the intact proteins and/or an LC-MS analysis of tryptic peptide fragments generated after the oxidation reaction is quenched. Ultimately, the mass spectral data is used to construct thermal denaturation curves for the detected proteins. In this proof-of-principle work, the protocol is applied to a four-protein model mixture comprised of ubiquitin, ribonuclease A (RNaseA), cyclophilin A (CypA), and bovine carbonic anhydrase II (BCAII). The new protocol's ability to detect protein-ligand binding interactions by comparing thermal denaturation data obtained in the absence and in the presence of ligand is demonstrated using cyclosporin A (CsA) as a test ligand. The known binding interaction between CsA and CypA was detected using both the MALDI- and LC-MS-based readouts described here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Computer simulations of reaction processes in solution in general rely on the definition of a reaction coordinate and the determination of the thermodynamic changes of the system along the reaction coordinate. The reaction coordinate often is constituted of characteristic geometrical properties of the reactive solute species, while the contributions of solvent molecules are implicitly included in the thermodynamics of the solute degrees of freedoms. However, solvent dynamics can provide the driving force for the reaction process, and in such cases explicit description of the solvent contribution in the free energy of the reaction process becomes necessary. We report here a method that can be used to analyze the solvent contributions to the reaction activation free energies from the combined QM/MM minimum free-energy path simulations. The method was applied to the self-exchange S(N)2 reaction of CH(3)Cl + Cl(-), showing that the importance of solvent-solute interactions to the reaction process. The results were further discussed in the context of coupling between solvent and solute molecules in reaction processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Use of phase transfer catalysts such as 18-crown-6 enables ionic, linear conjugated poly[2,6-{1,5-bis(3-propoxysulfonicacidsodiumsalt)}naphthylene]ethynylene (PNES) to efficiently disperse single-walled carbon nanotubes (SWNTs) in multiple organic solvents under standard ultrasonication methods. Steady-state electronic absorption spectroscopy, atomic force microscopy (AFM), and transmission electron microscopy (TEM) reveal that these SWNT suspensions are composed almost exclusively of individualized tubes. High-resolution TEM and AFM data show that the interaction of PNES with SWNTs in both protic and aprotic organic solvents provides a self-assembled superstructure in which a PNES monolayer helically wraps the nanotube surface with periodic and constant morphology (observed helical pitch length = 10 ± 2 nm); time-dependent examination of these suspensions indicates that these structures persist in solution over periods that span at least several months. Pump-probe transient absorption spectroscopy reveals that the excited state lifetimes and exciton binding energies of these well-defined nanotube-semiconducting polymer hybrid structures remain unchanged relative to analogous benchmark data acquired previously for standard sodium dodecylsulfate (SDS)-SWNT suspensions, regardless of solvent. These results demonstrate that the use of phase transfer catalysts with ionic semiconducting polymers that helically wrap SWNTs provide well-defined structures that solubulize SWNTs in a wide range of organic solvents while preserving critical nanotube semiconducting and conducting properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Poor access to prompt and effective treatment for malaria contributes to high mortality and severe morbidity. In Kenya, it is estimated that only 12% of children receive anti-malarials for their fever within 24 hours. The first point of care for many fevers is a local medicine retailer, such as a pharmacy or chemist. The role of the medicine retailer as an important distribution point for malaria medicines has been recognized and several different strategies have been used to improve the services that these retailers provide. Despite these efforts, many mothers still purchase ineffective drugs because they are less expensive than effective artemisinin combination therapy (ACT). One strategy that is being piloted in several countries is an international subsidy targeted at anti-malarials supplied through the retail sector. The goal of this strategy is to make ACT as affordable as ineffective alternatives. The programme, called the Affordable Medicines Facility - malaria was rolled out in Kenya in August 2010. METHODS: In December 2010, the affordability and accessibility of malaria medicines in a rural district in Kenya were evaluated using a complete census of all public and private facilities, chemists, pharmacists, and other malaria medicine retailers within the Webuye Demographic Surveillance Area. Availability, types, and prices of anti-malarials were assessed. There are 13 public or mission facilities and 97 medicine retailers (registered and unregistered). RESULTS: The average distance from a home to the nearest public health facility is 2 km, but the average distance to the nearest medicine retailer is half that. Quinine is the most frequently stocked anti-malarial (61% of retailers). More medicine retailers stocked sulphadoxine-pyramethamine (SP; 57%) than ACT (44%). Eleven percent of retailers stocked AMFm subsidized artemether-lumefantrine (AL). No retailers had chloroquine in stock and only five were selling artemisinin monotherapy. The mean price of any brand of AL, the recommended first-line drug in Kenya, was $2.7 USD. Brands purchased under the AMFm programme cost 40% less than non-AMFm brands. Artemisinin monotherapies cost on average more than twice as much as AMFm-brand AL. SP cost only $0.5, a fraction of the price of ACT. CONCLUSIONS: AMFm-subsidized anti-malarials are considerably less expensive than unsubsidized AL, but the price difference between effective and ineffective therapies is still large.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite an emerging understanding of the genetic alterations giving rise to various tumors, the mechanisms whereby most oncogenes are overexpressed remain unclear. Here we have utilized an integrated approach of genomewide regulatory element mapping via DNase-seq followed by conventional reporter assays and transcription factor binding site discovery to characterize the transcriptional regulation of the medulloblastoma oncogene Orthodenticle Homeobox 2 (OTX2). Through these studies we have revealed that OTX2 is differentially regulated in medulloblastoma at the level of chromatin accessibility, which is in part mediated by DNA methylation. In cell lines exhibiting chromatin accessibility of OTX2 regulatory regions, we found that autoregulation maintains OTX2 expression. Comparison of medulloblastoma regulatory elements with those of the developing brain reveals that these tumors engage a developmental regulatory program to drive OTX2 transcription. Finally, we have identified a transcriptional regulatory element mediating retinoid-induced OTX2 repression in these tumors. This work characterizes for the first time the mechanisms of OTX2 overexpression in medulloblastoma. Furthermore, this study establishes proof of principle for applying ENCODE datasets towards the characterization of upstream trans-acting factors mediating expression of individual genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Emulsion-based, resonant infrared matrix-assisted pulsed laser evaporation (RIR-MAPLE) has been demonstrated as an alternative technique to deposit conjugated polymer films for photovoltaic applications; yet, a fundamental understanding of how the emulsion target characteristics translate into film properties and solar cell performance is unclear. Such understanding is crucial to enable the rational improvement of organic solar cell (OSC) efficiency and to realize the expected advantages of emulsion-based RIR-MAPLE for OSC fabrication. In this paper, the effect of the primary solvent used in the emulsion target is studied, both experimentally and theoretically, and it is found to determine the conjugated polymer cluster size in the emulsion as well as surface roughness and internal morphology of resulting polymer films. By using a primary solvent with low solubility-in-water and low vapor pressure, the surface roughness of deposited P3HT and PCPDTBT polymer films was reduced to 10 nm, and the efficiency of P3HT:PC61BM OSCs was increased to 3.2% (∼100 times higher compared to the first MAPLE OSC demonstration [ Caricato , A. P. ; Appl. Phys. Lett. 2012 , 100 , 073306 ]). This work unveils the mechanism of polymer film formation using emulsion-based RIR-MAPLE and provides insight and direction to determine the best ways to take advantage of the emulsion target approach to control film properties for different applications.