13 resultados para Software eutils-search
em Duke University
Resumo:
BACKGROUND: Sharing of epidemiological and clinical data sets among researchers is poor at best, in detriment of science and community at large. The purpose of this paper is therefore to (1) describe a novel Web application designed to share information on study data sets focusing on epidemiological clinical research in a collaborative environment and (2) create a policy model placing this collaborative environment into the current scientific social context. METHODOLOGY: The Database of Databases application was developed based on feedback from epidemiologists and clinical researchers requiring a Web-based platform that would allow for sharing of information about epidemiological and clinical study data sets in a collaborative environment. This platform should ensure that researchers can modify the information. A Model-based predictions of number of publications and funding resulting from combinations of different policy implementation strategies (for metadata and data sharing) were generated using System Dynamics modeling. PRINCIPAL FINDINGS: The application allows researchers to easily upload information about clinical study data sets, which is searchable and modifiable by other users in a wiki environment. All modifications are filtered by the database principal investigator in order to maintain quality control. The application has been extensively tested and currently contains 130 clinical study data sets from the United States, Australia, China and Singapore. Model results indicated that any policy implementation would be better than the current strategy, that metadata sharing is better than data-sharing, and that combined policies achieve the best results in terms of publications. CONCLUSIONS: Based on our empirical observations and resulting model, the social network environment surrounding the application can assist epidemiologists and clinical researchers contribute and search for metadata in a collaborative environment, thus potentially facilitating collaboration efforts among research communities distributed around the globe.
Resumo:
We investigate how perceived meaning influences labor supply. In a laboratory setting, we manipulate the perceived meaning of simple, repetitive tasks and find a strong influence on subjects' labor supply. Despite the fact that the wage and the task are identical across the conditions in each experiment, subjects in the less meaningful conditions exhibit reservation wages that are consistently much higher than the subjects in the more meaningful conditions. The result replicates across different types of tasks. Moreover, in the more meaningful conditions, subjects' productivity influences labor supply more strongly. © 2008 Elsevier B.V. All rights reserved.
Resumo:
BACKGROUND: Computer simulations are of increasing importance in modeling biological phenomena. Their purpose is to predict behavior and guide future experiments. The aim of this project is to model the early immune response to vaccination by an agent based immune response simulation that incorporates realistic biophysics and intracellular dynamics, and which is sufficiently flexible to accurately model the multi-scale nature and complexity of the immune system, while maintaining the high performance critical to scientific computing. RESULTS: The Multiscale Systems Immunology (MSI) simulation framework is an object-oriented, modular simulation framework written in C++ and Python. The software implements a modular design that allows for flexible configuration of components and initialization of parameters, thus allowing simulations to be run that model processes occurring over different temporal and spatial scales. CONCLUSION: MSI addresses the need for a flexible and high-performing agent based model of the immune system.
Resumo:
Failing to find a tumor in an x-ray scan or a gun in an airport baggage screening can have dire consequences, making it fundamentally important to elucidate the mechanisms that hinder performance in such visual searches. Recent laboratory work has indicated that low target prevalence can lead to disturbingly high miss rates in visual search. Here, however, we demonstrate that misses in low-prevalence searches can be readily abated. When targets are rarely present, observers adapt by responding more quickly, and miss rates are high. Critically, though, these misses are often due to response-execution errors, not perceptual or identification errors: Observers know a target was present, but just respond too quickly. When provided an opportunity to correct their last response, observers can catch their mistakes. Thus, low target prevalence may not be a generalizable cause of high miss rates in visual search.
Resumo:
We report a comprehensive study of the binary systems of the platinum-group metals with the transition metals, using high-throughput first-principles calculations. These computations predict stability of new compounds in 28 binary systems where no compounds have been reported in the literature experimentally and a few dozen of as-yet unreported compounds in additional systems. Our calculations also identify stable structures at compound compositions that have been previously reported without detailed structural data and indicate that some experimentally reported compounds may actually be unstable at low temperatures. With these results, we construct enhanced structure maps for the binary alloys of platinum-group metals. These maps are much more complete, systematic, and predictive than those based on empirical results alone.
Resumo:
Technological advances in genotyping have given rise to hypothesis-based association studies of increasing scope. As a result, the scientific hypotheses addressed by these studies have become more complex and more difficult to address using existing analytic methodologies. Obstacles to analysis include inference in the face of multiple comparisons, complications arising from correlations among the SNPs (single nucleotide polymorphisms), choice of their genetic parametrization and missing data. In this paper we present an efficient Bayesian model search strategy that searches over the space of genetic markers and their genetic parametrization. The resulting method for Multilevel Inference of SNP Associations, MISA, allows computation of multilevel posterior probabilities and Bayes factors at the global, gene and SNP level, with the prior distribution on SNP inclusion in the model providing an intrinsic multiplicity correction. We use simulated data sets to characterize MISA's statistical power, and show that MISA has higher power to detect association than standard procedures. Using data from the North Carolina Ovarian Cancer Study (NCOCS), MISA identifies variants that were not identified by standard methods and have been externally "validated" in independent studies. We examine sensitivity of the NCOCS results to prior choice and method for imputing missing data. MISA is available in an R package on CRAN.
Resumo:
OBJECTIVE: To investigate the effect of statin use after radical prostatectomy (RP) on biochemical recurrence (BCR) in patients with prostate cancer who never received statins before RP. PATIENTS AND METHODS: We conducted a retrospective analysis of 1146 RP patients within the Shared Equal Access Regional Cancer Hospital (SEARCH) database. Multivariable Cox proportional hazards analyses were used to examine differences in risk of BCR between post-RP statin users vs nonusers. To account for varying start dates and duration of statin use during follow-up, post-RP statin use was treated as a time-dependent variable. In a secondary analysis, models were stratified by race to examine the association of post-RP statin use with BCR among black and non-black men. RESULTS: After adjusting for clinical and pathological characteristics, post-RP statin use was significantly associated with 36% reduced risk of BCR (hazard ratio [HR] 0.64, 95% confidence interval [CI] 0.47-0.87; P = 0.004). Post-RP statin use remained associated with reduced risk of BCR after adjusting for preoperative serum cholesterol levels. In secondary analysis, after stratification by race, this protective association was significant in non-black (HR 0.49, 95% CI 0.32-0.75; P = 0.001) but not black men (HR 0.82, 95% CI 0.53-1.28; P = 0.384). CONCLUSION: In this retrospective cohort of men undergoing RP, post-RP statin use was significantly associated with reduced risk of BCR. Whether the association between post-RP statin use and BCR differs by race requires further study. Given these findings, coupled with other studies suggesting that statins may reduce risk of advanced prostate cancer, randomised controlled trials are warranted to formally test the hypothesis that statins slow prostate cancer progression.
Resumo:
BACKGROUND: Administrative or quality improvement registries may or may not contain the elements needed for investigations by trauma researchers. International Classification of Diseases Program for Injury Categorisation (ICDPIC), a statistical program available through Stata, is a powerful tool that can extract injury severity scores from ICD-9-CM codes. We conducted a validation study for use of the ICDPIC in trauma research. METHODS: We conducted a retrospective cohort validation study of 40,418 patients with injury using a large regional trauma registry. ICDPIC-generated AIS scores for each body region were compared with trauma registry AIS scores (gold standard) in adult and paediatric populations. A separate analysis was conducted among patients with traumatic brain injury (TBI) comparing the ICDPIC tool with ICD-9-CM embedded severity codes. Performance in characterising overall injury severity, by the ISS, was also assessed. RESULTS: The ICDPIC tool generated substantial correlations in thoracic and abdominal trauma (weighted κ 0.87-0.92), and in head and neck trauma (weighted κ 0.76-0.83). The ICDPIC tool captured TBI severity better than ICD-9-CM code embedded severity and offered the advantage of generating a severity value for every patient (rather than having missing data). Its ability to produce an accurate severity score was consistent within each body region as well as overall. CONCLUSIONS: The ICDPIC tool performs well in classifying injury severity and is superior to ICD-9-CM embedded severity for TBI. Use of ICDPIC demonstrates substantial efficiency and may be a preferred tool in determining injury severity for large trauma datasets, provided researchers understand its limitations and take caution when examining smaller trauma datasets.
Resumo:
© 2015 IEEE.We consider the problem of verification of software implementations of linear time-invariant controllers. Commonly, different implementations use different representations of the controller's state, for example due to optimizations in a third-party code generator. To accommodate this variation, we exploit input-output controller specification captured by the controller's transfer function and show how to automatically verify correctness of C code controller implementations using a Frama-C/Why3/Z3 toolchain. Scalability of the approach is evaluated using randomly generated controller specifications of realistic size.
Resumo:
Meta-analyses of genome-wide association studies (GWAS) have demonstrated that the same genetic variants can be associated with multiple diseases and other complex traits. We present software called CPAG (Cross-Phenotype Analysis of GWAS) to look for similarities between 700 traits, build trees with informative clusters, and highlight underlying pathways. Clusters are consistent with pre-defined groups and literature-based validation but also reveal novel connections. We report similarity between plasma palmitoleic acid and Crohn's disease and find that specific fatty acids exacerbate enterocolitis in zebrafish. CPAG will become increasingly powerful as more genetic variants are uncovered, leading to a deeper understanding of complex traits. CPAG is freely available at www.sourceforge.net/projects/CPAG/.
Resumo:
Practice can improve performance on visual search tasks; the neural mechanisms underlying such improvements, however, are not clear. Response time typically shortens with practice, but which components of the stimulus-response processing chain facilitate this behavioral change? Improved search performance could result from enhancements in various cognitive processing stages, including (1) sensory processing, (2) attentional allocation, (3) target discrimination, (4) motor-response preparation, and/or (5) response execution. We measured event-related potentials (ERPs) as human participants completed a five-day visual-search protocol in which they reported the orientation of a color popout target within an array of ellipses. We assessed changes in behavioral performance and in ERP components associated with various stages of processing. After practice, response time decreased in all participants (while accuracy remained consistent), and electrophysiological measures revealed modulation of several ERP components. First, amplitudes of the early sensory-evoked N1 component at 150 ms increased bilaterally, indicating enhanced visual sensory processing of the array. Second, the negative-polarity posterior-contralateral component (N2pc, 170-250 ms) was earlier and larger, demonstrating enhanced attentional orienting. Third, the amplitude of the sustained posterior contralateral negativity component (SPCN, 300-400 ms) decreased, indicating facilitated target discrimination. Finally, faster motor-response preparation and execution were observed after practice, as indicated by latency changes in both the stimulus-locked and response-locked lateralized readiness potentials (LRPs). These electrophysiological results delineate the functional plasticity in key mechanisms underlying visual search with high temporal resolution and illustrate how practice influences various cognitive and neural processing stages leading to enhanced behavioral performance.
Resumo:
A common challenge that users of academic databases face is making sense of their query outputs for knowledge discovery. This is exacerbated by the size and growth of modern databases. PubMed, a central index of biomedical literature, contains over 25 million citations, and can output search results containing hundreds of thousands of citations. Under these conditions, efficient knowledge discovery requires a different data structure than a chronological list of articles. It requires a method of conveying what the important ideas are, where they are located, and how they are connected; a method of allowing users to see the underlying topical structure of their search. This paper presents VizMaps, a PubMed search interface that addresses some of these problems. Given search terms, our main backend pipeline extracts relevant words from the title and abstract, and clusters them into discovered topics using Bayesian topic models, in particular the Latent Dirichlet Allocation (LDA). It then outputs a visual, navigable map of the query results.