4 resultados para Skin cancers
em Duke University
Resumo:
BACKGROUND: Mutations in the TP53 gene are extremely common and occur very early in the progression of serous ovarian cancers. Gene expression patterns that relate to mutational status may provide insight into the etiology and biology of the disease. METHODS: The TP53 coding region was sequenced in 89 frozen serous ovarian cancers, 40 early stage (I/II) and 49 advanced stage (III/IV). Affymetrix U133A expression data was used to define gene expression patterns by mutation, type of mutation, and cancer stage. RESULTS: Missense or chain terminating (null) mutations in TP53 were found in 59/89 (66%) ovarian cancers. Early stage cancers had a significantly higher rate of null mutations than late stage disease (38% vs. 8%, p < 0.03). In advanced stage cases, mutations were more prevalent in short term survivors than long term survivors (81% vs. 30%, p = 0.0004). Gene expression patterns had a robust ability to predict TP53 status within training data. By using early versus late stage disease for out of sample predictions, the signature derived from early stage cancers could accurately (86%) predict mutation status of late stage cancers. CONCLUSIONS: This represents the first attempt to define a genomic signature of TP53 mutation in ovarian cancer. Patterns of gene expression characteristic of TP53 mutation could be discerned and included several genes that are known p53 targets or have been described in the context of expression signatures of TP53 mutation in breast cancer.
Resumo:
Tumor microenvironmental stresses, such as hypoxia and lactic acidosis, play important roles in tumor progression. Although gene signatures reflecting the influence of these stresses are powerful approaches to link expression with phenotypes, they do not fully reflect the complexity of human cancers. Here, we describe the use of latent factor models to further dissect the stress gene signatures in a breast cancer expression dataset. The genes in these latent factors are coordinately expressed in tumors and depict distinct, interacting components of the biological processes. The genes in several latent factors are highly enriched in chromosomal locations. When these factors are analyzed in independent datasets with gene expression and array CGH data, the expression values of these factors are highly correlated with copy number alterations (CNAs) of the corresponding BAC clones in both the cell lines and tumors. Therefore, variation in the expression of these pathway-associated factors is at least partially caused by variation in gene dosage and CNAs among breast cancers. We have also found the expression of two latent factors without any chromosomal enrichment is highly associated with 12q CNA, likely an instance of "trans"-variations in which CNA leads to the variations in gene expression outside of the CNA region. In addition, we have found that factor 26 (1q CNA) is negatively correlated with HIF-1alpha protein and hypoxia pathways in breast tumors and cell lines. This agrees with, and for the first time links, known good prognosis associated with both a low hypoxia signature and the presence of CNA in this region. Taken together, these results suggest the possibility that tumor segmental aneuploidy makes significant contributions to variation in the lactic acidosis/hypoxia gene signatures in human cancers and demonstrate that latent factor analysis is a powerful means to uncover such a linkage.
Resumo:
BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) is a common cause of complicated skin and skin-structure infection (cSSSI). Increasing antimicrobial resistance in cSSSI has led to a need for new safe and effective therapies. Ceftaroline was evaluated as treatment for cSSSI in 2 identical phase 3 clinical trials, the pooled analysis of which is presented here. The primary objective of each trial was to determine the noninferiority of the clinical cure rate achieved with ceftaroline monotherapy, compared with that achieved with vancomycin plus aztreonam combination therapy, in the clinically evaluable (CE) and modified intent-to-treat (MITT) patient populations. METHODS: Adult patients with cSSSI requiring intravenous therapy received ceftaroline (600 mg every 12 h) or vancomycin plus aztreonam (1 g each every 12 h) for 5-14 days. RESULTS: Of 1378 patients enrolled in both trials, 693 received ceftaroline and 685 received vancomycin plus aztreonam. Baseline characteristics of the treatment groups were comparable. Clinical cure rates were similar for ceftaroline and vancomycin plus aztreonam in the CE (91.6% vs 92.7%) and MITT (85.9% vs 85.5%) populations, respectively, as well as in patients infected with MRSA (93.4% vs 94.3%). The rates of adverse events, discontinuations because of an adverse event, serious adverse events, and death also were similar between treatment groups. CONCLUSIONS: Ceftaroline achieved high clinical cure rates, was efficacious against cSSSI caused by MRSA and other common cSSSI pathogens, and was well tolerated, with a safety profile consistent with the cephalosporin class. Ceftaroline has the potential to provide a monotherapy alternative for the treatment of cSSSI. TRIAL REGISTRATION: ClinicalTrials.gov identifiers: NCT00424190 for CANVAS 1 and NCT00423657 for CANVAS 2.
Resumo:
It is proposed that select oligomers of polymer d-lactic acid (PDLA) will form a stereocomplex with l-lactate in vivo, producing lactate deficiency in tumor cells. Those cancer cells that utilize transport of lactate to maintain electrical neutrality may cease to multiply or die because of lactate trapping, and those cancer cells that benefit from utilization of extracellular lactate may be impaired. Intracellular trapping of lactate produces a different physiology than inhibition of LDH because the cell loses the option of shuttling pyruvate to an alternative pathway to produce an anion. Conjugated with stains or fluorescent probes, PDLA oligomers may be an agent for the diagnosis of tissue lactate and possibly cell differentiation in biopsy specimens. Preliminary experimental evidence is presented confirming that PDLA in high concentrations is cytotoxic and that l-lactate forms a presumed stereocomplex with PDLA. Future work should be directed at isolation of biologically active oligomers of PDLA.