2 resultados para Simplification of nature
em Duke University
Resumo:
We study the problem of supervised linear dimensionality reduction, taking an information-theoretic viewpoint. The linear projection matrix is designed by maximizing the mutual information between the projected signal and the class label. By harnessing a recent theoretical result on the gradient of mutual information, the above optimization problem can be solved directly using gradient descent, without requiring simplification of the objective function. Theoretical analysis and empirical comparison are made between the proposed method and two closely related methods, and comparisons are also made with a method in which Rényi entropy is used to define the mutual information (in this case the gradient may be computed simply, under a special parameter setting). Relative to these alternative approaches, the proposed method achieves promising results on real datasets. Copyright 2012 by the author(s)/owner(s).
Resumo:
This chapter presents a model averaging approach in the M-open setting using sample re-use methods to approximate the predictive distribution of future observations. It first reviews the standard M-closed Bayesian Model Averaging approach and decision-theoretic methods for producing inferences and decisions. It then reviews model selection from the M-complete and M-open perspectives, before formulating a Bayesian solution to model averaging in the M-open perspective. It constructs optimal weights for MOMA:M-open Model Averaging using a decision-theoretic framework, where models are treated as part of the ‘action space’ rather than unknown states of nature. Using ‘incompatible’ retrospective and prospective models for data from a case-control study, the chapter demonstrates that MOMA gives better predictive accuracy than the proxy models. It concludes with open questions and future directions.