5 resultados para Signalisation Wnt
em Duke University
Resumo:
Wg/Wnt signals specify cell fates in both invertebrate and vertebrate embryos and maintain stem-cell populations in many adult tissues. Deregulation of the Wnt pathway can transform cells to a proliferative fate, leading to cancer. We have discovered that two Drosophila proteins that are crucial for cytokinesis have a second, largely independent, role in restricting activity of the Wnt pathway. The fly homolog of RacGAP1, Tumbleweed (Tum)/RacGAP50C, and its binding partner, the kinesin-like protein Pavarotti (Pav), negatively regulate Wnt activity in fly embryos and in cultured mammalian cells. Unlike many known regulators of the Wnt pathway, these molecules do not affect stabilization of Arm/beta-catenin (betacat), the principal effector molecule in Wnt signal transduction. Rather, they appear to act downstream of betacat stabilization to control target-gene transcription. Both Tum and Pav accumulate in the nuclei of interphase cells, a location that is spatially distinct from their cleavage-furrow localization during cytokinesis. We show that this nuclear localization is essential for their role in Wnt regulation. Thus, we have identified two modulators of the Wnt pathway that have shared functions in cell division, which hints at a possible link between cytokinesis and Wnt activity during tumorigenesis.
Resumo:
Activated Wnt signaling is critical in the pathogenesis of renal fibrosis, a final common pathway for most forms of chronic kidney disease. Therapeutic intervention by inhibition of individual Wnts or downstream Wnt/β-catenin signaling has been proposed, but these approaches do not interrupt the functions of all Wnts nor block non-canonical Wnt signaling pathways. Alternatively, an orally bioavailable small molecule, Wnt-C59, blocks the catalytic activity of the Wnt-acyl transferase porcupine, and thereby prevents secretion of all Wnt isoforms. We found that inhibiting porcupine dramatically attenuates kidney fibrosis in the murine unilateral ureteral obstruction model. Wnt-C59 treatment similarly blunts collagen mRNA expression in the obstructed kidney. Consistent with its actions to broadly arrest Wnt signaling, porcupine inhibition reduces expression of Wnt target genes and bolsters nuclear exclusion of β-catenin in the kidney following ureteral obstruction. Importantly, prevention of Wnt secretion by Wnt-C59 blunts expression of inflammatory cytokines in the obstructed kidney that otherwise provoke a positive feedback loop of Wnt expression in collagen-producing fibroblasts and epithelial cells. Thus, therapeutic targeting of porcupine abrogates kidney fibrosis not only by overcoming the redundancy of individual Wnt isoforms but also by preventing upstream cytokine-induced Wnt generation. These findings reveal a novel therapeutic maneuver to protect the kidney from fibrosis by interrupting a pathogenic crosstalk loop between locally generated inflammatory cytokines and the Wnt/β-catenin signaling pathway.
Resumo:
Developmental signals in metazoans play critical roles in inducing cell differentiation from multipotent progenitors. The existing paradigm posits that the signals operate directly through their downstream transcription factors to activate expression of cell type-specific genes, which are the hallmark of cell identity. We have investigated the mechanism through which Wnt signaling induces osteoblast differentiation in an osteoblast-adipocyte bipotent progenitor cell line. Unexpectedly, Wnt3a acutely suppresses the expression of a large number of genes while inducing osteoblast differentiation. The suppressed genes include Pparg and Cebpa, which encode adipocyte-specifying transcription factors and suppression of which is sufficient to induce osteoblast differentiation. The large scale gene suppression induced by Wnt3a corresponds to a global decrease in histone acetylation, an epigenetic modification that is associated with gene activation. Mechanistically, Wnt3a does not alter histone acetyltransferase or deacetylase activities but, rather, decreases the level of acetyl-CoA in the nucleus. The Wnt-induced decrease in histone acetylation is independent of β-catenin signaling but, rather, correlates with suppression of glucose metabolism in the tricarboxylic acid cycle. Functionally, preventing histone deacetylation by increasing nucleocytoplasmic acetyl-CoA levels impairs Wnt3a-induced osteoblast differentiation. Thus, Wnt signaling induces osteoblast differentiation in part through histone deacetylation and epigenetic suppression of an alternative cell fate.
Resumo:
While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently generated to study the transcriptional program of the mouse segmentation clock, a biological oscillator associated with the periodic formation of the segments of the body axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used to detect periodic profiles in the dataset, leading to the identification of a novel set of cyclic genes associated with the segmentation clock. Here, we applied to the same microarray time series dataset four distinct mathematical methods to identify significant patterns in gene expression profiles. These methods are called: Phase consistency, Address reduction, Cyclohedron test and Stable persistence, and are based on different conceptual frameworks that are either hypothesis- or data-driven. Some of the methods, unlike Fourier transforms, are not dependent on the assumption of periodicity of the pattern of interest. Remarkably, these methods identified blindly the expression profiles of known cyclic genes as the most significant patterns in the dataset. Many candidate genes predicted by more than one approach appeared to be true positive cyclic genes and will be of particular interest for future research. In addition, these methods predicted novel candidate cyclic genes that were consistent with previous biological knowledge and experimental validation in mouse embryos. Our results demonstrate the utility of these novel pattern detection strategies, notably for detection of periodic profiles, and suggest that combining several distinct mathematical approaches to analyze microarray datasets is a valuable strategy for identifying genes that exhibit novel, interesting transcriptional patterns.
Resumo:
The human neocortex differs from that of other great apes in several notable regards, including altered cell cycle, prolonged corticogenesis, and increased size [1-5]. Although these evolutionary changes most likely contributed to the origin of distinctively human cognitive faculties, their genetic basis remains almost entirely unknown. Highly conserved non-coding regions showing rapid sequence changes along the human lineage are candidate loci for the development and evolution of uniquely human traits. Several studies have identified human-accelerated enhancers [6-14], but none have linked an expression difference to a specific organismal trait. Here we report the discovery of a human-accelerated regulatory enhancer (HARE5) of FZD8, a receptor of the Wnt pathway implicated in brain development and size [15, 16]. Using transgenic mice, we demonstrate dramatic differences in human and chimpanzee HARE5 activity, with human HARE5 driving early and robust expression at the onset of corticogenesis. Similar to HARE5 activity, FZD8 is expressed in neural progenitors of the developing neocortex [17-19]. Chromosome conformation capture assays reveal that HARE5 physically and specifically contacts the core Fzd8 promoter in the mouse embryonic neocortex. To assess the phenotypic consequences of HARE5 activity, we generated transgenic mice in which Fzd8 expression is under control of orthologous enhancers (Pt-HARE5::Fzd8 and Hs-HARE5::Fzd8). In comparison to Pt-HARE5::Fzd8, Hs-HARE5::Fzd8 mice showed marked acceleration of neural progenitor cell cycle and increased brain size. Changes in HARE5 function unique to humans thus alter the cell-cycle dynamics of a critical population of stem cells during corticogenesis and may underlie some distinctive anatomical features of the human brain.