3 resultados para Sidney, Algernon, 1623-1683.
em Duke University
Resumo:
An analytical model was developed to describe in-canopy vertical distribution of ammonia (NH(3)) sources and sinks and vertical fluxes in a fertilized agricultural setting using measured in-canopy mean NH(3) concentration and wind speed profiles. This model was applied to quantify in-canopy air-surface exchange rates and above-canopy NH(3) fluxes in a fertilized corn (Zea mays) field. Modeled air-canopy NH(3) fluxes agreed well with independent above-canopy flux estimates. Based on the model results, the urea fertilized soil surface was a consistent source of NH(3) one month following the fertilizer application, whereas the vegetation canopy was typically a net NH(3) sink with the lower portion of the canopy being a constant sink. The model results suggested that the canopy was a sink for some 70% of the estimated soil NH(3) emissions. A logical conclusion is that parametrization of within-canopy processes in air quality models are necessary to explore the impact of agricultural field level management practices on regional air quality. Moreover, there are agronomic and environmental benefits to timing liquid fertilizer applications as close to canopy closure as possible. Finally, given the large within-canopy mean NH(3) concentration gradients in such agricultural settings, a discussion about the suitability of the proposed model is also presented.
Resumo:
Molecular theories of shear thickening and shear thinning in associative polymer networks are typically united in that they involve a single kinetic parameter that describes the network -- a relaxation time that is related to the lifetime of the associative bonds. Here we report the steady-shear behavior of two structurally identical metallo-supramolecular polymer networks, for which single-relaxation parameter models break down in dramatic fashion. The networks are formed by the addition of reversible cross-linkers to semidilute entangled solutions of PVP in DMSO, and they differ only in the lifetime of the reversible cross-links. Shear thickening is observed for cross-linkers that have a slower dissociation rate (17 s(-1)), while shear thinning is observed for samples that have a faster dissociation rate (ca. 1400 s(-1)). The difference in the steady shear behavior of the unentangled vs. entangled regime reveals an unexpected, additional competing relaxation, ascribed to topological disentanglement in the semidilute entangled regime that contributes to the rheological properties.
Resumo:
To assess the effect of targeted myocardial beta-adrenergic receptor (AR) stimulation on relaxation and phospholamban regulation, we studied the physiological and biochemical alterations associated with overexpression of the human beta2-AR gene in transgenic mice. These mice have an approximately 200-fold increase in beta-AR density and a 2-fold increase in basal adenylyl cyclase activity relative to negative littermate controls. Mice were catheterized with a high fidelity micromanometer and hemodynamic recordings were obtained in vivo. Overexpression of the beta2-AR altered parameters of relaxation. At baseline, LV dP/dt(min) and the time constant of LV pressure isovolumic decay (Tau) in the transgenic mice were significantly shorter compared with controls, indicating markedly enhanced myocardial relaxation. Isoproterenol stimulation resulted in shortening of relaxation velocity in control mice but not in the transgenic mice, indicating maximal relaxation in these animals. Immunoblotting analysis revealed a selective decrease in the amount of phospholamban protein, without a significant change in the content for either sarcoplasmic reticulum Ca2+ ATPase or calsequestrin, in the transgenic hearts compared with controls. This study indicates that myocardial relaxation is both markedly enhanced and maximal in these mice and that conditions associated with chronic beta-AR stimulation can result in a selective reduction of phospholamban protein.