2 resultados para Series Summation Method

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

While genome-wide gene expression data are generated at an increasing rate, the repertoire of approaches for pattern discovery in these data is still limited. Identifying subtle patterns of interest in large amounts of data (tens of thousands of profiles) associated with a certain level of noise remains a challenge. A microarray time series was recently generated to study the transcriptional program of the mouse segmentation clock, a biological oscillator associated with the periodic formation of the segments of the body axis. A method related to Fourier analysis, the Lomb-Scargle periodogram, was used to detect periodic profiles in the dataset, leading to the identification of a novel set of cyclic genes associated with the segmentation clock. Here, we applied to the same microarray time series dataset four distinct mathematical methods to identify significant patterns in gene expression profiles. These methods are called: Phase consistency, Address reduction, Cyclohedron test and Stable persistence, and are based on different conceptual frameworks that are either hypothesis- or data-driven. Some of the methods, unlike Fourier transforms, are not dependent on the assumption of periodicity of the pattern of interest. Remarkably, these methods identified blindly the expression profiles of known cyclic genes as the most significant patterns in the dataset. Many candidate genes predicted by more than one approach appeared to be true positive cyclic genes and will be of particular interest for future research. In addition, these methods predicted novel candidate cyclic genes that were consistent with previous biological knowledge and experimental validation in mouse embryos. Our results demonstrate the utility of these novel pattern detection strategies, notably for detection of periodic profiles, and suggest that combining several distinct mathematical approaches to analyze microarray datasets is a valuable strategy for identifying genes that exhibit novel, interesting transcriptional patterns.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Controversies exist regarding the indications for unicompartmental knee arthroplasty. The objective of this study is to report the mid-term results and examine predictors of failure in a metal-backed unicompartmental knee arthroplasty design. METHODS: At a mean follow-up of 60 months, 80 medial unicompartmental knee arthroplasties (68 patients) were evaluated. Implant survivorship was analyzed using Kaplan-Meier method. The Knee Society objective and functional scores and radiographic characteristics were compared before surgery and at final follow-up. A Cox proportional hazard model was used to examine the association of patient's age, gender, obesity (body mass index > 30 kg/m2), diagnosis, Knee Society scores and patella arthrosis with failure. RESULTS: There were 9 failures during the follow up. The mean Knee Society objective and functional scores were respectively 49 and 48 points preoperatively and 95 and 92 points postoperatively. The survival rate was 92% at 5 years and 84% at 10 years. The mean age was younger in the failure group than the non-failure group (p < 0.01). However, none of the factors assessed was independently associated with failure based on the results from the Cox proportional hazard model. CONCLUSION: Gender, pre-operative diagnosis, preoperative objective and functional scores and patellar osteophytes were not independent predictors of failure of unicompartmental knee implants, although high body mass index trended toward significance. The findings suggest that the standard criteria for UKA may be expanded without compromising the outcomes, although caution may be warranted in patients with very high body mass index pending additional data to confirm our results. LEVEL OF EVIDENCE: IV.