4 resultados para Sennacherib, King of Assyria, -681 B.C.
em Duke University
Resumo:
BACKGROUND: Previous clinical efficacy trials failed to support the continued development of recombinant gp120 (rgp120) as a candidate HIV vaccine. However, the recent RV144 HIV vaccine trial in Thailand showed that a prime/boost immunization strategy involving priming with canarypox vCP1521 followed by boosting with rgp120 could provide significant, although modest, protection from HIV infection. Based on these results, there is renewed interest in the development of rgp120 based antigens for follow up vaccine trials, where this immunization approach can be applied to other cohorts at high risk for HIV infection. Of particular interest are cohorts in Africa, India, and China that are infected with clade C viruses. METHODOLOGY/PRINCIPAL FINDINGS: A panel of 10 clade C rgp120 envelope proteins was expressed in 293 cells, purified by immunoaffinity chromatography, and used to immunize guinea pigs. The resulting sera were collected and analyzed in checkerboard experiments for rgp120 binding, V3 peptide binding, and CD4 blocking activity. Virus neutralization studies were carried out with two different assays and two different panels of clade C viruses. A high degree of cross reactivity against clade C and clade B viruses and viral proteins was observed. Most, but not all of the immunogens tested elicited antibodies that neutralized tier 1 clade B viruses, and some sera neutralized multiple clade C viruses. Immunization with rgp120 from the CN97001 strain of HIV appeared to elicit higher cross neutralizing antibody titers than the other antigens tested. CONCLUSIONS/SIGNIFICANCE: While all of the clade C antigens tested were immunogenic, some were more effective than others in eliciting virus neutralizing antibodies. Neutralization titers did not correlate with rgp120 binding, V3 peptide binding, or CD4 blocking activity. CN97001 rgp120 elicited the highest level of neutralizing antibodies, and should be considered for further HIV vaccine development studies.
Resumo:
The ground state structure of C(4N+2) rings is believed to exhibit a geometric transition from angle alternation (N < or = 2) to bond alternation (N > 2). All previous density functional theory (DFT) studies on these molecules have failed to reproduce this behavior by predicting either that the transition occurs at too large a ring size, or that the transition leads to a higher symmetry cumulene. Employing the recently proposed perspective of delocalization error within DFT we rationalize this failure of common density functional approximations (DFAs) and present calculations with the rCAM-B3LYP exchange-correlation functional that show an angle-to-bond-alternation transition between C(10) and C(14). The behavior exemplified here manifests itself more generally as the well known tendency of DFAs to bias toward delocalized electron distributions as favored by Huckel aromaticity, of which the C(4N+2) rings provide a quintessential example. Additional examples are the relative energies of the C(20) bowl, cage, and ring isomers; we show that the results from functionals with minimal delocalization error are in good agreement with CCSD(T) results, in contrast to other commonly used DFAs. An unbiased DFT treatment of electron delocalization is a key for reliable prediction of relative stability and hence the structures of complex molecules where many structure stabilization mechanisms exist.
Resumo:
A female patient, with normal familial history, developed at the age of 30 months an episode of diarrhoea, vomiting and lethargy which resolved spontaneously. At the age of 3 years, the patient re-iterated vomiting, was sub-febrile and hypoglycemic, fell into coma, developed seizures and sequels involving right hemi-body. Urinary excretion of hexanoylglycine and suberylglycine was low during this metabolic decompensation. A study of pre- and post-prandial blood glucose and ketones over a period of 24 hours showed a normal glycaemic cycle but a failure to form ketones after 12 hours fasting, suggesting a mitochondrial β-oxidation defect. Total blood carnitine was lowered with unesterified carnitine being half of the lowest control value. A diagnosis of mild MCAD deficiency (MCADD) was based on rates of 1-14C-octanoate and 9, 10-3H-myristate oxidation and of octanoyl-CoA dehydrogenase being reduced to 25% of control values. Other mitochondrial fatty acid oxidation proteins were functionally normal. De novo acylcarnitine synthesis in whole blood samples incubated with deuterated palmitate was also typical of MCADD. Genetic studies showed that the patient was compound heterozygous with a sequence variation in both of the two ACADM alleles; one had the common c.985A>G mutation and the other had a novel c.145C>G mutation. This is the first report for the ACADM gene c.145C>G mutation: it is located in exon 3 and causes a replacement of glutamine to glutamate at position 24 of the mature protein (Q24E). Associated with heterozygosity for c.985A>G mutation, this mutation is responsible for a mild MCADD phenotype along with a clinical story corroborating the emerging literature view that patients with genotypes representing mild MCADD (high residual enzyme activity and low urinary levels of glycine conjugates), similar to some of the mild MCADDs detected by MS/MS newborn screening, may be at risk for disease presentation.
Resumo:
Intratumoral B lymphocytes are an integral part of the lung tumor microenvironment. Interrogation of the antibodies they express may improve our understanding of the host response to cancer and could be useful in elucidating novel molecular targets. We used two strategies to explore the repertoire of intratumoral B cell antibodies. First, we cloned VH and VL genes from single intratumoral B lymphocytes isolated from one lung tumor, expressed the genes as recombinant mAbs, and used the mAbs to identify the cognate tumor antigens. The Igs derived from intratumoral B cells demonstrated class switching, with a mean VH mutation frequency of 4%. Although there was no evidence for clonal expansion, these data are consistent with antigen-driven somatic hypermutation. Individual recombinant antibodies were polyreactive, although one clone demonstrated preferential immunoreactivity with tropomyosin 4 (TPM4). We found that higher levels of TPM4 antibodies were more common in cancer patients, but measurement of TPM4 antibody levels was not a sensitive test for detecting cancer. Second, in an effort to focus our recombinant antibody expression efforts on those B cells that displayed evidence of clonal expansion driven by antigen stimulation, we performed deep sequencing of the Ig genes of B cells collected from seven different tumors. Deep sequencing demonstrated somatic hypermutation but no dominant clones. These strategies may be useful for the study of B cell antibody expression, although identification of a dominant clone and unique therapeutic targets may require extensive investigation.