2 resultados para Self-regulated learning

em Duke University


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To pilot test if Orthopaedic Surgery residents could self-assess their performance using newly created milestones, as defined by the Accreditation Council on Graduate Medical Education. METHODS: In June 2012, an email was sent to Program Directors and administrative coordinators of the 154 accredited Orthopaedic Surgery Programs, asking them to send their residents a link to an online survey. The survey was adapted from the Orthopaedic Surgery Milestone Project. Completed surveys were aggregated in an anonymous, confidential database. SAS 9.3 was used to perform the analyses. RESULTS: Responses from 71 residents were analyzed. First and second year residents indicated through self-assessment that they had substantially achieved Level 1 and Level 2 milestones. Third year residents reported they had substantially achieved 30/41, and fourth year residents, all Level 3 milestones. Fifth year, graduating residents, reported they had substantially achieved 17 Level 4 milestones, and were extremely close on another 15. No milestone was rated at Level 5, the maximum possible. Earlier in training, Patient Care and Medical Knowledge milestones were rated lower than the milestones reflecting the other four competencies of Practice Based Learning and Improvement, Systems Based Practice, Professionalism, and Interpersonal Communication. The gap was closed by the fourth year. CONCLUSIONS: Residents were able to successfully self-assess using the 41 Orthopaedic Surgery milestones. Respondents' rate improved proficiency over time. Graduating residents report they have substantially, or close to substantially, achieved all Level 4 milestones. Milestone self-assessment may be a useful tool as one component of a program's overall performance assessment strategy.