3 resultados para Self-organizing cloud

em Duke University


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The successful design of biomaterial scaffolds for articular cartilage tissue engineering requires an understanding of the impact of combinations of material formulation parameters on diverse and competing functional outcomes of biomaterial performance. This study sought to explore the use of a type of unsupervised artificial network, a self-organizing map, to identify relationships between scaffold formulation parameters (crosslink density, molecular weight, and concentration) and 11 such outcomes (including mechanical properties, matrix accumulation, metabolite usage and production, and histological appearance) for scaffolds formed from crosslinked elastin-like polypeptide (ELP) hydrogels. The artificial neural network recognized patterns in functional outcomes and provided a set of relationships between ELP formulation parameters and measured outcomes. Mapping resulted in the best mean separation amongst neurons for mechanical properties and pointed to crosslink density as the strongest predictor of most outcomes, followed by ELP concentration. The map also grouped formulations together that simultaneously resulted in the highest values for matrix production, greatest changes in metabolite consumption or production, and highest histological scores, indicating that the network was able to recognize patterns amongst diverse measurement outcomes. These results demonstrated the utility of artificial neural network tools for recognizing relationships in systems with competing parameters, toward the goal of optimizing and accelerating the design of biomaterial scaffolds for articular cartilage tissue engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Regular landscape patterning arises from spatially-dependent feedbacks, and can undergo catastrophic loss in response to changing landscape drivers. The central Everglades (Florida, USA) historically exhibited regular, linear, flow-parallel orientation of high-elevation sawgrass ridges and low-elevation sloughs that has degraded due to hydrologic modification. In this study, we use a meta-ecosystem approach to model a mechanism for the establishment, persistence, and loss of this landscape. The discharge competence (or self-organizing canal) hypothesis assumes non-linear relationships between peat accretion and water depth, and describes flow-dependent feedbacks of microtopography on water depth. Closed-form model solutions demonstrate that 1) this mechanism can produce spontaneous divergence of local elevation; 2) divergent and homogenous states can exhibit global bi-stability; and 3) feedbacks that produce divergence act anisotropically. Thus, discharge competence and non-linear peat accretion dynamics may explain the establishment, persistence, and loss of landscape pattern, even in the absence of other spatial feedbacks. Our model provides specific, testable predictions that may allow discrimination between the self-organizing canal hypotheses and competing explanations. The potential for global bi-stability suggested by our model suggests that hydrologic restoration may not re-initiate spontaneous pattern establishment, particularly where distinct soil elevation modes have been lost. As a result, we recommend that management efforts should prioritize maintenance of historic hydroperiods in areas of conserved pattern over restoration of hydrologic regimes in degraded regions. This study illustrates the value of simple meta-ecosystem models for investigation of spatial processes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

My goal was to describe how biological and ecological factors give shape to fishing practices that can contribute to the successful self-governance of a small-scale fishing system in the Gulf of California, Mexico. The analysis was based on a comparison of the main ecological and biological indicators that fishers claim to use to govern their day-to-day decision making about fishing and data collected in situ. I found that certain indicators allow fishers to learn about differences and characteristics of the resource system and its units. Fishers use such information to guide their day-to-day fishing decisions. More importantly, these decisions appear unable to shape the reproductive viability of the fishery because no indicators were correlated to the reproductive cycle of the target species. As a result, the fishing practices constitute a number of mechanisms that might provide short-term buffering capacity against perturbations or stress factors that otherwise would threaten the overall sustainability and self-governance of the system. The particular biological circumstances that shape the harvesting practices might also act as a precursor of self-governance because they provide fishers with enough incentives to meet the costs of organizing the necessary rule structure that underlies a successful self-governance system.