7 resultados para Self-help techniques.
em Duke University
Resumo:
This research tested if a 12-session coping improvement group intervention (n = 104) reduced depressive symptoms in HIV-infected older adults compared to an interpersonal support group intervention (n = 105) and an individual therapy upon request (ITUR) control condition (n = 86). Participants were 295 HIV-infected men and women 50-plus years of age living in New York City, Cincinnati, OH, and Columbus, OH. Using A-CASI assessment methodology, participants provided data on their depressive symptoms using the Geriatric Depression Screening Scale (GDS) at pre-intervention, post-intervention, and 4- and 8-month follow-up. Whether conducted with all participants (N = 295) or only a subset of participants diagnosed with mild, moderate, or severe depressive symptoms (N = 171), mixed models analyses of repeated measures found that both coping improvement and interpersonal support group intervention participants reported fewer depressive symptoms than ITUR controls at post-intervention, 4-month follow-up, and 8-month follow-up. The effect sizes of the differences between the two active interventions and the control group were greater when outcome analyses were limited to those participants with mild, moderate, or severe depressive symptoms. At no assessment period did coping improvement and interpersonal support group intervention participants differ in depressive symptoms.
Resumo:
The authors of this study evaluated a structured 10-session psychosocial support group intervention for newly HIV-diagnosed pregnant South African women. Participants were expected to display increases in HIV disclosure, self-esteem, active coping and positive social support, and decreases in depression, avoidant coping, and negative social support. Three hundred sixty-one pregnant HIV-infected women were recruited from four antenatal clinics in Tshwane townships from April 2005 to September 2006. Using a quasi-experimental design, assessments were conducted at baseline and two and eight months post-intervention. A series of random effects regression analyses were conducted, with the three assessment points treated as a random effect of time. At both follow-ups, the rate of disclosure in the intervention group was significantly higher than that of the comparison group (p<0.001). Compared to the comparison group at the first follow-up, the intervention group displayed higher levels of active coping (t=2.68, p<0.05) and lower levels of avoidant coping (t=-2.02, p<0.05), and those who attended at least half of the intervention sessions exhibited improved self-esteem (t=2.11, p<0.05). Group interventions tailored for newly HIV positive pregnant women, implemented in resource-limited settings, may accelerate the process of adjusting to one's HIV status, but may not have sustainable benefits over time.
Resumo:
OBJECTIVE: The Veterans Health Administration has developed My HealtheVet (MHV), a Web-based portal that links veterans to their care in the veteran affairs (VA) system. The objective of this study was to measure diabetic veterans' access to and use of the Internet, and their interest in using MHV to help manage their diabetes. MATERIALS AND METHODS: Cross-sectional mailed survey of 201 patients with type 2 diabetes and hemoglobin A(1c) > 8.0% receiving primary care at any of five primary care clinic sites affiliated with a VA tertiary care facility. Main measures included Internet usage, access, and attitudes; computer skills; interest in using the Internet; awareness of and attitudes toward MHV; demographics; and socioeconomic status. RESULTS: A majority of respondents reported having access to the Internet at home. Nearly half of all respondents had searched online for information about diabetes, including some who did not have home Internet access. More than a third obtained "some" or "a lot" of their health-related information online. Forty-one percent reported being "very interested" in using MHV to help track their home blood glucose readings, a third of whom did not have home Internet access. Factors associated with being "very interested" were as follows: having access to the Internet at home (p < 0.001), "a lot/some" trust in the Internet as a source of health information (p = 0.002), lower age (p = 0.03), and some college (p = 0.04). Neither race (p = 0.44) nor income (p = 0.25) was significantly associated with interest in MHV. CONCLUSIONS: This study found that a diverse sample of older VA patients with sub-optimally controlled diabetes had a level of familiarity with and access to the Internet comparable to an age-matched national sample. In addition, there was a high degree of interest in using the Internet to help manage their diabetes.
Resumo:
INTRODUCTION: We aimed to inform the design of behavioral interventions by identifying patients' and their family members' perceived facilitators and barriers to hypertension self-management. MATERIALS AND METHODS: We conducted focus groups of African American patients with hypertension and their family members to elicit their views about factors influencing patients' hypertension self-management. We recruited African American patients with hypertension (n = 18) and their family members (n = 12) from an urban, community-based clinical practice in Baltimore, Maryland. We conducted four separate 90-minute focus groups among patients with controlled (one group) and uncontrolled (one group) hypertension, as well as their family members (two groups). Trained moderators used open-ended questions to assess participants' perceptions regarding patient, family, clinic, and community-level factors influencing patients' effective hypertension self-management. RESULTS: Patient participants identified several facilitators (including family members' support and positive relationships with doctors) and barriers (including competing health priorities, lack of knowledge about hypertension, and poor access to community resources) that influence their hypertension self-management. Family members also identified several facilitators (including their participation in patients' doctor's visits and discussions with patients' doctors outside of visits) and barriers (including their own limited health knowledge and patients' lack of motivation to sustain hypertension self-management behaviors) that affect their efforts to support patients' hypertension self-management. CONCLUSION: African American patients with hypertension and their family members reported numerous patient, family, clinic, and community-level facilitators and barriers to patients' hypertension self-management. Patients' and their family members' views may help guide efforts to tailor behavioral interventions designed to improve hypertension self-management behaviors and hypertension control in minority populations.
Resumo:
BACKGROUND/AIMS: The obesity epidemic has spread to young adults, and obesity is a significant risk factor for cardiovascular disease. The prominence and increasing functionality of mobile phones may provide an opportunity to deliver longitudinal and scalable weight management interventions in young adults. The aim of this article is to describe the design and development of the intervention tested in the Cell Phone Intervention for You study and to highlight the importance of adaptive intervention design that made it possible. The Cell Phone Intervention for You study was a National Heart, Lung, and Blood Institute-sponsored, controlled, 24-month randomized clinical trial comparing two active interventions to a usual-care control group. Participants were 365 overweight or obese (body mass index≥25 kg/m2) young adults. METHODS: Both active interventions were designed based on social cognitive theory and incorporated techniques for behavioral self-management and motivational enhancement. Initial intervention development occurred during a 1-year formative phase utilizing focus groups and iterative, participatory design. During the intervention testing, adaptive intervention design, where an intervention is updated or extended throughout a trial while assuring the delivery of exactly the same intervention to each cohort, was employed. The adaptive intervention design strategy distributed technical work and allowed introduction of novel components in phases intended to help promote and sustain participant engagement. Adaptive intervention design was made possible by exploiting the mobile phone's remote data capabilities so that adoption of particular application components could be continuously monitored and components subsequently added or updated remotely. RESULTS: The cell phone intervention was delivered almost entirely via cell phone and was always-present, proactive, and interactive-providing passive and active reminders, frequent opportunities for knowledge dissemination, and multiple tools for self-tracking and receiving tailored feedback. The intervention changed over 2 years to promote and sustain engagement. The personal coaching intervention, alternatively, was primarily personal coaching with trained coaches based on a proven intervention, enhanced with a mobile application, but where all interactions with the technology were participant-initiated. CONCLUSION: The complexity and length of the technology-based randomized clinical trial created challenges in engagement and technology adaptation, which were generally discovered using novel remote monitoring technology and addressed using the adaptive intervention design. Investigators should plan to develop tools and procedures that explicitly support continuous remote monitoring of interventions to support adaptive intervention design in long-term, technology-based studies, as well as developing the interventions themselves.
Resumo:
X-ray computed tomography (CT) imaging constitutes one of the most widely used diagnostic tools in radiology today with nearly 85 million CT examinations performed in the U.S in 2011. CT imparts a relatively high amount of radiation dose to the patient compared to other x-ray imaging modalities and as a result of this fact, coupled with its popularity, CT is currently the single largest source of medical radiation exposure to the U.S. population. For this reason, there is a critical need to optimize CT examinations such that the dose is minimized while the quality of the CT images is not degraded. This optimization can be difficult to achieve due to the relationship between dose and image quality. All things being held equal, reducing the dose degrades image quality and can impact the diagnostic value of the CT examination.
A recent push from the medical and scientific community towards using lower doses has spawned new dose reduction technologies such as automatic exposure control (i.e., tube current modulation) and iterative reconstruction algorithms. In theory, these technologies could allow for scanning at reduced doses while maintaining the image quality of the exam at an acceptable level. Therefore, there is a scientific need to establish the dose reduction potential of these new technologies in an objective and rigorous manner. Establishing these dose reduction potentials requires precise and clinically relevant metrics of CT image quality, as well as practical and efficient methodologies to measure such metrics on real CT systems. The currently established methodologies for assessing CT image quality are not appropriate to assess modern CT scanners that have implemented those aforementioned dose reduction technologies.
Thus the purpose of this doctoral project was to develop, assess, and implement new phantoms, image quality metrics, analysis techniques, and modeling tools that are appropriate for image quality assessment of modern clinical CT systems. The project developed image quality assessment methods in the context of three distinct paradigms, (a) uniform phantoms, (b) textured phantoms, and (c) clinical images.
The work in this dissertation used the “task-based” definition of image quality. That is, image quality was broadly defined as the effectiveness by which an image can be used for its intended task. Under this definition, any assessment of image quality requires three components: (1) A well defined imaging task (e.g., detection of subtle lesions), (2) an “observer” to perform the task (e.g., a radiologists or a detection algorithm), and (3) a way to measure the observer’s performance in completing the task at hand (e.g., detection sensitivity/specificity).
First, this task-based image quality paradigm was implemented using a novel multi-sized phantom platform (with uniform background) developed specifically to assess modern CT systems (Mercury Phantom, v3.0, Duke University). A comprehensive evaluation was performed on a state-of-the-art CT system (SOMATOM Definition Force, Siemens Healthcare) in terms of noise, resolution, and detectability as a function of patient size, dose, tube energy (i.e., kVp), automatic exposure control, and reconstruction algorithm (i.e., Filtered Back-Projection– FPB vs Advanced Modeled Iterative Reconstruction– ADMIRE). A mathematical observer model (i.e., computer detection algorithm) was implemented and used as the basis of image quality comparisons. It was found that image quality increased with increasing dose and decreasing phantom size. The CT system exhibited nonlinear noise and resolution properties, especially at very low-doses, large phantom sizes, and for low-contrast objects. Objective image quality metrics generally increased with increasing dose and ADMIRE strength, and with decreasing phantom size. The ADMIRE algorithm could offer comparable image quality at reduced doses or improved image quality at the same dose (increase in detectability index by up to 163% depending on iterative strength). The use of automatic exposure control resulted in more consistent image quality with changing phantom size.
Based on those results, the dose reduction potential of ADMIRE was further assessed specifically for the task of detecting small (<=6 mm) low-contrast (<=20 HU) lesions. A new low-contrast detectability phantom (with uniform background) was designed and fabricated using a multi-material 3D printer. The phantom was imaged at multiple dose levels and images were reconstructed with FBP and ADMIRE. Human perception experiments were performed to measure the detection accuracy from FBP and ADMIRE images. It was found that ADMIRE had equivalent performance to FBP at 56% less dose.
Using the same image data as the previous study, a number of different mathematical observer models were implemented to assess which models would result in image quality metrics that best correlated with human detection performance. The models included naïve simple metrics of image quality such as contrast-to-noise ratio (CNR) and more sophisticated observer models such as the non-prewhitening matched filter observer model family and the channelized Hotelling observer model family. It was found that non-prewhitening matched filter observers and the channelized Hotelling observers both correlated strongly with human performance. Conversely, CNR was found to not correlate strongly with human performance, especially when comparing different reconstruction algorithms.
The uniform background phantoms used in the previous studies provided a good first-order approximation of image quality. However, due to their simplicity and due to the complexity of iterative reconstruction algorithms, it is possible that such phantoms are not fully adequate to assess the clinical impact of iterative algorithms because patient images obviously do not have smooth uniform backgrounds. To test this hypothesis, two textured phantoms (classified as gross texture and fine texture) and a uniform phantom of similar size were built and imaged on a SOMATOM Flash scanner (Siemens Healthcare). Images were reconstructed using FBP and a Sinogram Affirmed Iterative Reconstruction (SAFIRE). Using an image subtraction technique, quantum noise was measured in all images of each phantom. It was found that in FBP, the noise was independent of the background (textured vs uniform). However, for SAFIRE, noise increased by up to 44% in the textured phantoms compared to the uniform phantom. As a result, the noise reduction from SAFIRE was found to be up to 66% in the uniform phantom but as low as 29% in the textured phantoms. Based on this result, it clear that further investigation was needed into to understand the impact that background texture has on image quality when iterative reconstruction algorithms are used.
To further investigate this phenomenon with more realistic textures, two anthropomorphic textured phantoms were designed to mimic lung vasculature and fatty soft tissue texture. The phantoms (along with a corresponding uniform phantom) were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Scans were repeated a total of 50 times in order to get ensemble statistics of the noise. A novel method of estimating the noise power spectrum (NPS) from irregularly shaped ROIs was developed. It was found that SAFIRE images had highly locally non-stationary noise patterns with pixels near edges having higher noise than pixels in more uniform regions. Compared to FBP, SAFIRE images had 60% less noise on average in uniform regions for edge pixels, noise was between 20% higher and 40% lower. The noise texture (i.e., NPS) was also highly dependent on the background texture for SAFIRE. Therefore, it was concluded that quantum noise properties in the uniform phantoms are not representative of those in patients for iterative reconstruction algorithms and texture should be considered when assessing image quality of iterative algorithms.
The move beyond just assessing noise properties in textured phantoms towards assessing detectability, a series of new phantoms were designed specifically to measure low-contrast detectability in the presence of background texture. The textures used were optimized to match the texture in the liver regions actual patient CT images using a genetic algorithm. The so called “Clustured Lumpy Background” texture synthesis framework was used to generate the modeled texture. Three textured phantoms and a corresponding uniform phantom were fabricated with a multi-material 3D printer and imaged on the SOMATOM Flash scanner. Images were reconstructed with FBP and SAFIRE and analyzed using a multi-slice channelized Hotelling observer to measure detectability and the dose reduction potential of SAFIRE based on the uniform and textured phantoms. It was found that at the same dose, the improvement in detectability from SAFIRE (compared to FBP) was higher when measured in a uniform phantom compared to textured phantoms.
The final trajectory of this project aimed at developing methods to mathematically model lesions, as a means to help assess image quality directly from patient images. The mathematical modeling framework is first presented. The models describe a lesion’s morphology in terms of size, shape, contrast, and edge profile as an analytical equation. The models can be voxelized and inserted into patient images to create so-called “hybrid” images. These hybrid images can then be used to assess detectability or estimability with the advantage that the ground truth of the lesion morphology and location is known exactly. Based on this framework, a series of liver lesions, lung nodules, and kidney stones were modeled based on images of real lesions. The lesion models were virtually inserted into patient images to create a database of hybrid images to go along with the original database of real lesion images. ROI images from each database were assessed by radiologists in a blinded fashion to determine the realism of the hybrid images. It was found that the radiologists could not readily distinguish between real and virtual lesion images (area under the ROC curve was 0.55). This study provided evidence that the proposed mathematical lesion modeling framework could produce reasonably realistic lesion images.
Based on that result, two studies were conducted which demonstrated the utility of the lesion models. The first study used the modeling framework as a measurement tool to determine how dose and reconstruction algorithm affected the quantitative analysis of liver lesions, lung nodules, and renal stones in terms of their size, shape, attenuation, edge profile, and texture features. The same database of real lesion images used in the previous study was used for this study. That database contained images of the same patient at 2 dose levels (50% and 100%) along with 3 reconstruction algorithms from a GE 750HD CT system (GE Healthcare). The algorithms in question were FBP, Adaptive Statistical Iterative Reconstruction (ASiR), and Model-Based Iterative Reconstruction (MBIR). A total of 23 quantitative features were extracted from the lesions under each condition. It was found that both dose and reconstruction algorithm had a statistically significant effect on the feature measurements. In particular, radiation dose affected five, three, and four of the 23 features (related to lesion size, conspicuity, and pixel-value distribution) for liver lesions, lung nodules, and renal stones, respectively. MBIR significantly affected 9, 11, and 15 of the 23 features (including size, attenuation, and texture features) for liver lesions, lung nodules, and renal stones, respectively. Lesion texture was not significantly affected by radiation dose.
The second study demonstrating the utility of the lesion modeling framework focused on assessing detectability of very low-contrast liver lesions in abdominal imaging. Specifically, detectability was assessed as a function of dose and reconstruction algorithm. As part of a parallel clinical trial, images from 21 patients were collected at 6 dose levels per patient on a SOMATOM Flash scanner. Subtle liver lesion models (contrast = -15 HU) were inserted into the raw projection data from the patient scans. The projections were then reconstructed with FBP and SAFIRE (strength 5). Also, lesion-less images were reconstructed. Noise, contrast, CNR, and detectability index of an observer model (non-prewhitening matched filter) were assessed. It was found that SAFIRE reduced noise by 52%, reduced contrast by 12%, increased CNR by 87%. and increased detectability index by 65% compared to FBP. Further, a 2AFC human perception experiment was performed to assess the dose reduction potential of SAFIRE, which was found to be 22% compared to the standard of care dose.
In conclusion, this dissertation provides to the scientific community a series of new methodologies, phantoms, analysis techniques, and modeling tools that can be used to rigorously assess image quality from modern CT systems. Specifically, methods to properly evaluate iterative reconstruction have been developed and are expected to aid in the safe clinical implementation of dose reduction technologies.
Resumo:
The focus on how one is behaving, feeling, and thinking, provides a powerful source of self-knowledge. How is this self-knowledge utilized in the dynamic reconstruction of autobiographical memories? How, in turn, might autobiographical memories support identity and the self-system? I address these questions through a critical review of the literature on autobiographical memory and the self-system, with a special focus on the self-concept, self-knowledge, and identity. I then outline the methods and results of a prospective longitudinal study examining the effects of an identity change on memory for events related to that identity. Participant-rated memory characteristics, computer-generated ratings of narrative content and structure, and neutral-observer ratings of coherence were examined for changes over time related to an identity-change, as well as for their ability to predict an identity-change. The conclusions from this study are threefold: (1) when the rated centrality of an event decreases, the reported instances of retrieval, as well as the phenomenology associated with retrieval and the number of words used to describe the memory, also decrease; (2) memory accuracy (here, estimating past behaviors) was not influenced by an identity change; and (3) remembering is not unidirectional – characteristics of identity-relevant memories and the life story predict and may help support persistence with an identity (here, an academic trajectory).