4 resultados para Selection effects
em Duke University
Resumo:
Social and ecological factors are important in shaping sexual dimorphism in Anthropoidea, but there is also a tendency for body-size dimorphism and canine dimorphism to increase with increased body size (Rensch's rule) (Rensch: Evolution Above the Species Level. London: Methuen, 1959.) Most ecologist interpret Rensch's rule to be a consequence of social and ecological selective factors that covary with body size, but recent claims have been advanced that dimorphism is principally a consequence of selection for increased body size alone. Here we assess the effects of body size, body-size dimorphism, and social structure on canine dimorphism among platyrrhine monkeys. Platyrrhine species examined are classified into four behavioral groups reflecting the intensity of intermale competition for access to females or to limiting resources. As canine dimorphism increases, so does the level of intermale competition. Those species with monogamous and polyandrous social structures have the lowest canine dimorphism, while those with dominance rank hierarchies of males have the most canine dimorphism. Species with fission-fusion social structures and transitory intermale breeding-season competition fall between these extremes. Among platyrrhines there is a significant positive correlation between body size and canine dimorphism However, within levels of competition, no significant correlation was found between the two. Also, with increased body size, body-size dimorphism tends to increase, and this correlation holds in some cases within competition levels. In an analysis of covariance, once the level of intermale competition is controlled for, neither molar size nor molar-size dimorphism accounts for a significant part of the variance in canine dimorphism. A similar analysis using body weight as a measure of size and dimorphism yields a less clear-cut picture: body weight contributes significantly to the model when the effects of the other factors are controlled. Finally, in a model using head and body length as a measure of size and dimorphism, all factors and the interactions between them are significant. We conclude that intermale competition among platyrrhine species is the most important factor explaining variations in canine dimorphism. The significant effects of size and size dimorphism in some models may be evidence that natural (as opposed to sexual) selection also plays a role in the evolution of increased canine dimorphism.
Resumo:
© 2015 IEEE.In virtual reality applications, there is an aim to provide real time graphics which run at high refresh rates. However, there are many situations in which this is not possible due to simulation or rendering issues. When running at low frame rates, several aspects of the user experience are affected. For example, each frame is displayed for an extended period of time, causing a high persistence image artifact. The effect of this artifact is that movement may lose continuity, and the image jumps from one frame to another. In this paper, we discuss our initial exploration of the effects of high persistence frames caused by low refresh rates and compare it to high frame rates and to a technique we developed to mitigate the effects of low frame rates. In this technique, the low frame rate simulation images are displayed with low persistence by blanking out the display during the extra time such image would be displayed. In order to isolate the visual effects, we constructed a simulator for low and high persistence displays that does not affect input latency. A controlled user study comparing the three conditions for the tasks of 3D selection and navigation was conducted. Results indicate that the low persistence display technique may not negatively impact user experience or performance as compared to the high persistence case. Directions for future work on the use of low persistence displays for low frame rate situations are discussed.
Resumo:
© 2014, The International Biometric Society.A potential venue to improve healthcare efficiency is to effectively tailor individualized treatment strategies by incorporating patient level predictor information such as environmental exposure, biological, and genetic marker measurements. Many useful statistical methods for deriving individualized treatment rules (ITR) have become available in recent years. Prior to adopting any ITR in clinical practice, it is crucial to evaluate its value in improving patient outcomes. Existing methods for quantifying such values mainly consider either a single marker or semi-parametric methods that are subject to bias under model misspecification. In this article, we consider a general setting with multiple markers and propose a two-step robust method to derive ITRs and evaluate their values. We also propose procedures for comparing different ITRs, which can be used to quantify the incremental value of new markers in improving treatment selection. While working models are used in step I to approximate optimal ITRs, we add a layer of calibration to guard against model misspecification and further assess the value of the ITR non-parametrically, which ensures the validity of the inference. To account for the sampling variability of the estimated rules and their corresponding values, we propose a resampling procedure to provide valid confidence intervals for the value functions as well as for the incremental value of new markers for treatment selection. Our proposals are examined through extensive simulation studies and illustrated with the data from a clinical trial that studies the effects of two drug combinations on HIV-1 infected patients.
Resumo:
Humanity is shaped by its relationships with microbes. From bacterial infections to the production of biofuels, industry and health often hinge on our control of microbial populations. Understanding the physiological and genetic basis of their behaviors is therefore of the highest importance. To this end I have investigated the genetic basis of plastic adhesion in Saccharomyces cerevisiae, the mechanistic and evolutionary dynamics of mixed species biofilms with Escherichia coli and S. cerevisiae, and the induction of filamentation in E. coli. Using a bulk segregant analysis on experimentally evolved populations, I detected 28 genes that are likely to mediate plastic adhesion in S. cerevisiae. With a variety of imaging and culture manipulation techniques, I found that particular strains of E. coli are capable of inducing flocculation and macroscopic biofilm formation via coaggregation with yeast. I also employed experimental evolution and microbial demography techniques to find that selection for mixed species biofilm association leads to lower fecundity in S. cerevisiae. Using culture manipulation and imaging techniques, I also found that E. coli are capable of inducing a filamentous phenotype with a secreted signal that has many of the qualities of a quorum sensing molecule.