4 resultados para See and Avoid
em Duke University
Resumo:
Bycatch reduction technology (BRT) modifies fishing gear to increase selectivity and avoid capture of non-target species, or to facilitate their non-lethal release. As a solution to fisheries-related mortality of non-target species, BRT is an attractive option; effectively implemented, BRT presents a technical 'fix' that can reduce pressure for politically contentious and economically detrimental interventions, such as fisheries closures. While a number of factors might contribute to effective implementation, our review of BRT literature finds that research has focused on technical design and experimental performance of individual technologies. In contrast, and with a few notable exceptions, research on the human and institutional context of BRT, and more specifically on how fishers respond to BRT, is limited. This is not to say that fisher attitudes are ignored or overlooked, but that incentives for fisher uptake of BRT are usually assumed rather than assessed or demonstrated. Three assumptions about fisher incentives dominate: (1) economic incentives will generate acceptance of BRT; (2) enforcement will generate compliance with BRT; and (3) 'participation' by fishers will increase acceptance and compliance, and overall support for BRT. In this paper, we explore evidence for and against these assumptions and situate our analysis in the wider social science literature on fisheries. Our goal is to highlight the need and suggest focal areas for further research. © Inter-Research 2008.
Resumo:
Learning multiple tasks across heterogeneous domains is a challenging problem since the feature space may not be the same for different tasks. We assume the data in multiple tasks are generated from a latent common domain via sparse domain transforms and propose a latent probit model (LPM) to jointly learn the domain transforms, and the shared probit classifier in the common domain. To learn meaningful task relatedness and avoid over-fitting in classification, we introduce sparsity in the domain transforms matrices, as well as in the common classifier. We derive theoretical bounds for the estimation error of the classifier in terms of the sparsity of domain transforms. An expectation-maximization algorithm is derived for learning the LPM. The effectiveness of the approach is demonstrated on several real datasets.
Resumo:
The number of studies examining visual perspective during retrieval has recently grown. However, the way in which perspective has been conceptualized differs across studies. Some studies have suggested perspective is experienced as either a first-person or a third-person perspective, whereas others have suggested both perspectives can be experienced during a single retrieval attempt. This aspect of perspective was examined across three studies, which used different measurement techniques commonly used in studies of perspective. Results suggest that individuals can experience more than one perspective when recalling events. Furthermore, the experience of the two perspectives correlated differentially with ratings of vividness, suggesting that the two perspectives should not be considered in opposition of one another. We also found evidence of a gender effect in the experience of perspective, with females experiencing third-person perspectives more often than males. Future studies should allow for the experience of more than one perspective during retrieval.
Resumo:
BACKGROUND: This study examined whether objective measures of food, physical activity and built environment exposures, in home and non-home settings, contribute to children's body weight. Further, comparing GPS and GIS measures of environmental exposures along routes to and from school, we tested for evidence of selective daily mobility bias when using GPS data. METHODS: This study is a cross-sectional analysis, using objective assessments of body weight in relation to multiple environmental exposures. Data presented are from a sample of 94 school-aged children, aged 5-11 years. Children's heights and weights were measured by trained researchers, and used to calculate BMI z-scores. Participants wore a GPS device for one full week. Environmental exposures were estimated within home and school neighbourhoods, and along GIS (modelled) and GPS (actual) routes from home to school. We directly compared associations between BMI and GIS-modelled versus GPS-derived environmental exposures. The study was conducted in Mebane and Mount Airy, North Carolina, USA, in 2011. RESULTS: In adjusted regression models, greater school walkability was associated with significantly lower mean BMI. Greater home walkability was associated with increased BMI, as was greater school access to green space. Adjusted associations between BMI and route exposure characteristics were null. The use of GPS-actual route exposures did not appear to confound associations between environmental exposures and BMI in this sample. CONCLUSIONS: This study found few associations between environmental exposures in home, school and commuting domains and body weight in children. However, walkability of the school neighbourhood may be important. Of the other significant associations observed, some were in unexpected directions. Importantly, we found no evidence of selective daily mobility bias in this sample, although our study design is in need of replication in a free-living adult sample.