2 resultados para Seashore biology
em Duke University
Resumo:
BACKGROUND: The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. METHODOLOGY/PRINCIPAL FINDINGS: We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. CONCLUSIONS/SIGNIFICANCE: The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of the detailed variations in phenotype, whether between mutant or wildtype, among individual humans, or across the diversity of species, requires a process by which a precise combination of terms from domain ontologies are selected and organized according to logical relations. The efficiencies that we have developed in this process will be useful for any attempt to annotate complex phenotypic descriptions using ontologies. We also discuss some ramifications of EQ representation for the domain of systematics.
Resumo:
Pancreatic cancer is a devastating disease with a universally poor prognosis. In 2015, it is estimated that there will be 48,960 new cases of pancreatic cancer and that 40,560 people will die of the disease. The 5-year survival rate is 7.2% for all patients with pancreatic cancer; however, survival depends greatly on the stage at diagnosis. Unfortunately, 53% of patients already have metastatic disease at diagnosis, which corresponds to a 5-year survival rate of 2.4%. Even for the 9% of patients with localized disease confined to the pancreas, the 5-year survival is still modest at only 27.1%. These grim statistics highlight the need for ways to identify cohorts of individuals at highest risk, methods to screen those at highest risk to identify preinvasive pathologic precursors, and development of effective systemic therapies. Recent clinical and translational progress has emphasized the relationship with diabetes, the role of the stroma, and the interplay of each of these with inflammation in the pathobiology of pancreatic cancer. In this article, we will discuss these relationships and how they might translate into novel management strategies for the treatment of this disease.