3 resultados para Sclerolobium paniculatum var. rubiginosum
em Duke University
Resumo:
Cryptococcus neoformans is a pathogenic basidiomycetous yeast responsible for more than 600,000 deaths each year. It occurs as two serotypes (A and D) representing two varieties (i.e. grubii and neoformans, respectively). Here, we sequenced the genome and performed an RNA-Seq-based analysis of the C. neoformans var. grubii transcriptome structure. We determined the chromosomal locations, analyzed the sequence/structural features of the centromeres, and identified origins of replication. The genome was annotated based on automated and manual curation. More than 40,000 introns populating more than 99% of the expressed genes were identified. Although most of these introns are located in the coding DNA sequences (CDS), over 2,000 introns in the untranslated regions (UTRs) were also identified. Poly(A)-containing reads were employed to locate the polyadenylation sites of more than 80% of the genes. Examination of the sequences around these sites revealed a new poly(A)-site-associated motif (AUGHAH). In addition, 1,197 miscRNAs were identified. These miscRNAs can be spliced and/or polyadenylated, but do not appear to have obvious coding capacities. Finally, this genome sequence enabled a comparative analysis of strain H99 variants obtained after laboratory passage. The spectrum of mutations identified provides insights into the genetics underlying the micro-evolution of a laboratory strain, and identifies mutations involved in stress responses, mating efficiency, and virulence.
Resumo:
We discuss a general approach to dynamic sparsity modeling in multivariate time series analysis. Time-varying parameters are linked to latent processes that are thresholded to induce zero values adaptively, providing natural mechanisms for dynamic variable inclusion/selection. We discuss Bayesian model specification, analysis and prediction in dynamic regressions, time-varying vector autoregressions, and multivariate volatility models using latent thresholding. Application to a topical macroeconomic time series problem illustrates some of the benefits of the approach in terms of statistical and economic interpretations as well as improved predictions. Supplementary materials for this article are available online. © 2013 Copyright Taylor and Francis Group, LLC.
Resumo:
Cryptococcus neoformans var. grubii (Cng) is the most common cause of fungal meningitis, and its prevalence is highest in sub-Saharan Africa. Patients become infected by inhaling airborne spores or desiccated yeast cells from the environment, where the fungus thrives in avian droppings, trees and soil. To investigate the prevalence and population structure of Cng in southern Africa, we analysed isolates from 77 environmental samples and 64 patients. We detected significant genetic diversity among isolates and strong evidence of geographic structure at the local level. High proportions of isolates with the rare MATa allele were observed in both clinical and environmental isolates; however, the mating-type alleles were unevenly distributed among different subpopulations. Nearly equal proportions of the MATa and MATα mating types were observed among all clinical isolates and in one environmental subpopulation from the eastern part of Botswana. As previously reported, there was evidence of both clonality and recombination in different geographic areas. These results provide a foundation for subsequent genomewide association studies to identify genes and genotypes linked to pathogenicity in humans.