3 resultados para Scientist-Practitioner

em Duke University


Relevância:

20.00% 20.00%

Publicador:

Resumo:

I believe the evidence will show that the science we conduct and discoveries we make are influenced by our cultural experience, whether they be positive, negative, or neutral. I grew up as a person of color in the United States of America, faced with challenges that many had as members of an underrepresented minority group. I write here about some of the lessons I have learned that have allowed me to survive as an underrepresented minority -scientist in a majority environment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heteronormativity is the presumption of heterosexuality as the default sexual orientation and can result in discrimination against the lesbian, gay, and bisexual (LGB) population. This study serves as one of the first experimental studies to examine heteronormative perceptions in communication and their effects on practitioner-patient relationships. LGB participants were randomly assigned to read either heteronormative or non-heteronormative vignettes of a doctor-patient interaction. They then indicated how much health-relevant information they would disclose to the doctor in the vignette and their level of trust in the doctor. In the heteronormative condition, participants were less likely to disclose health-relevant information to the doctor in the vignette and were less trustful of the doctor as compared to those in the non-heteronormative condition. These results have important health implications, as lack of disclosure and trust may prevent people from getting needed care and prevent doctors from giving the best health advice possible. The results of this study provide further evidence that there is a need for more education for all health care professionals to feel comfortable while respectfully communicating with and treating patients who do not identify as heterosexual in order to ensure the best health care experience.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Scientists rarely reuse expert knowledge of phylogeny, in spite of years of effort to assemble a great "Tree of Life" (ToL). A notable exception involves the use of Phylomatic, which provides tools to generate custom phylogenies from a large, pre-computed, expert phylogeny of plant taxa. This suggests great potential for a more generalized system that, starting with a query consisting of a list of any known species, would rectify non-standard names, identify expert phylogenies containing the implicated taxa, prune away unneeded parts, and supply branch lengths and annotations, resulting in a custom phylogeny suited to the user's needs. Such a system could become a sustainable community resource if implemented as a distributed system of loosely coupled parts that interact through clearly defined interfaces. RESULTS: With the aim of building such a "phylotastic" system, the NESCent Hackathons, Interoperability, Phylogenies (HIP) working group recruited 2 dozen scientist-programmers to a weeklong programming hackathon in June 2012. During the hackathon (and a three-month follow-up period), 5 teams produced designs, implementations, documentation, presentations, and tests including: (1) a generalized scheme for integrating components; (2) proof-of-concept pruners and controllers; (3) a meta-API for taxonomic name resolution services; (4) a system for storing, finding, and retrieving phylogenies using semantic web technologies for data exchange, storage, and querying; (5) an innovative new service, DateLife.org, which synthesizes pre-computed, time-calibrated phylogenies to assign ages to nodes; and (6) demonstration projects. These outcomes are accessible via a public code repository (GitHub.com), a website (http://www.phylotastic.org), and a server image. CONCLUSIONS: Approximately 9 person-months of effort (centered on a software development hackathon) resulted in the design and implementation of proof-of-concept software for 4 core phylotastic components, 3 controllers, and 3 end-user demonstration tools. While these products have substantial limitations, they suggest considerable potential for a distributed system that makes phylogenetic knowledge readily accessible in computable form. Widespread use of phylotastic systems will create an electronic marketplace for sharing phylogenetic knowledge that will spur innovation in other areas of the ToL enterprise, such as annotation of sources and methods and third-party methods of quality assessment.