2 resultados para SYNERGY
em Duke University
Resumo:
Diarthrodial joints are essential for load bearing and locomotion. Physiologically, articular cartilage sustains millions of cycles of mechanical loading. Chondrocytes, the cells in cartilage, regulate their metabolic activities in response to mechanical loading. Pathological mechanical stress can lead to maladaptive cellular responses and subsequent cartilage degeneration. We sought to deconstruct chondrocyte mechanotransduction by identifying mechanosensitive ion channels functioning at injurious levels of strain. We detected robust expression of the recently identified mechanosensitive channels, PIEZO1 and PIEZO2. Combined directed expression of Piezo1 and -2 sustained potentiated mechanically induced Ca(2+) signals and electrical currents compared with single-Piezo expression. In primary articular chondrocytes, mechanically evoked Ca(2+) transients produced by atomic force microscopy were inhibited by GsMTx4, a PIEZO-blocking peptide, and by Piezo1- or Piezo2-specific siRNA. We complemented the cellular approach with an explant-cartilage injury model. GsMTx4 reduced chondrocyte death after mechanical injury, suggesting a possible therapy for reducing cartilage injury and posttraumatic osteoarthritis by attenuating Piezo-mediated cartilage mechanotransduction of injurious strains.
Resumo:
To provide biological insights into transcriptional regulation, a couple of groups have recently presented models relating the promoter DNA-bound transcription factors (TFs) to downstream gene’s mean transcript level or transcript production rates over time. However, transcript production is dynamic in response to changes of TF concentrations over time. Also, TFs are not the only factors binding to promoters; other DNA binding factors (DBFs) bind as well, especially nucleosomes, resulting in competition between DBFs for binding at same genomic location. Additionally, not only TFs, but also some other elements regulate transcription. Within core promoter, various regulatory elements influence RNAPII recruitment, PIC formation, RNAPII searching for TSS, and RNAPII initiating transcription. Moreover, it is proposed that downstream from TSS, nucleosomes resist RNAPII elongation.
Here, we provide a machine learning framework to predict transcript production rates from DNA sequences. We applied this framework in the S. cerevisiae yeast for two scenarios: a) to predict the dynamic transcript production rate during the cell cycle for native promoters; b) to predict the mean transcript production rate over time for synthetic promoters. As far as we know, our framework is the first successful attempt to have a model that can predict dynamic transcript production rates from DNA sequences only: with cell cycle data set, we got Pearson correlation coefficient Cp = 0.751 and coefficient of determination r2 = 0.564 on test set for predicting dynamic transcript production rate over time. Also, for DREAM6 Gene Promoter Expression Prediction challenge, our fitted model outperformed all participant teams, best of all teams, and a model combining best team’s k-mer based sequence features and another paper’s biologically mechanistic features, in terms of all scoring metrics.
Moreover, our framework shows its capability of identifying generalizable fea- tures by interpreting the highly predictive models, and thereby provide support for associated hypothesized mechanisms about transcriptional regulation. With the learned sparse linear models, we got results supporting the following biological insights: a) TFs govern the probability of RNAPII recruitment and initiation possibly through interactions with PIC components and transcription cofactors; b) the core promoter amplifies the transcript production probably by influencing PIC formation, RNAPII recruitment, DNA melting, RNAPII searching for and selecting TSS, releasing RNAPII from general transcription factors, and thereby initiation; c) there is strong transcriptional synergy between TFs and core promoter elements; d) the regulatory elements within core promoter region are more than TATA box and nucleosome free region, suggesting the existence of still unidentified TAF-dependent and cofactor-dependent core promoter elements in yeast S. cerevisiae; e) nucleosome occupancy is helpful for representing +1 and -1 nucleosomes’ regulatory roles on transcription.