3 resultados para SPILLOVERS
em Duke University
Resumo:
In this dissertation, I explore the impact of several public policies on civic participation. Using a unique combination of school administrative and public–use voter files and methods for causal inference, I evaluate the impact of three new, as of yet unexplored, policies: one informational, one institutional, and one skill–based. Chapter 2 examines the causal effect of No Child Left Behind’s performance-based accountability school failure signals on turnout in school board elections and on individuals’ use of exit. I find that failure signals mobilize citizens both at the ballot box and by encouraging them to vote with their feet. However, these increases in voice and exit come primarily from citizens who already active—thus exacerbating inequalities in both forms of participation. Chapter 3 examines the causal effect of preregistration—an electoral reform that allows young citizens to enroll in the electoral system before turning 18, while also providing them with various in-school supports. Using data from the Current Population Survey and Florida Voter Files and multiple methods for causal inference, I (with my coauthor listed below) show that preregistration mobilizes and does so for a diverse set of citizens. Finally, Chapter 4 examines the impact of psychosocial or so called non-cognitive skills on voter turnout. Using information from the Fast Track intervention, I show that early– childhood investments in psychosocial skills have large, long-run spillovers on civic participation. These gains are widely distributed, being especially large for those least likely to participate. These chapters provide clear insights that reach across disciplinary boundaries and speak to current policy debates. In placing specific attention not only on whether these programs mobilize, but also on who they mobilize, I provide scholars and practitioners with new ways of thinking about how to address stubbornly low and unequal rates of citizen engagement.
Resumo:
Urban problems have several features that make them inherently dynamic. Large transaction costs all but guarantee that homeowners will do their best to consider how a neighborhood might change before buying a house. Similarly, stores face large sunk costs when opening, and want to be sure that their investment will pay off in the long run. In line with those concerns, different areas of Economics have made recent advances in modeling those questions within a dynamic framework. This dissertation contributes to those efforts.
Chapter 2 discusses how to model an agent’s location decision when the agent must learn about an exogenous amenity that may be changing over time. The model is applied to estimating the marginal willingness to pay to avoid crime, in which agents are learning about the crime rate in a neighborhood, and the crime rate can change in predictable (Markovian) ways.
Chapters 3 and 4 concentrate on location decision problems when there are externalities between decision makers. Chapter 3 focuses on the decision of business owners to open a store, when its demand is a function of other nearby stores, either through competition, or through spillovers on foot traffic. It uses a dynamic model in continuous time to model agents’ decisions. A particular challenge is isolating the contribution of spillovers from the contribution of other unobserved neighborhood attributes that could also lead to agglomeration. A key contribution of this chapter is showing how we can use information on storefront ownership to help separately identify spillovers.
Finally, chapter 4 focuses on a class of models in which families prefer to live
close to similar neighbors. This chapter provides the first simulation of such a model in which agents are forward looking, and shows that this leads to more segregation than it would have been observed with myopic agents, which is the standard in this literature. The chapter also discusses several extensions of the model that can be used to investigate relevant questions such as the arrival of a large contingent high skilled tech workers in San Francisco, the immigration of hispanic families to several southern American cities, large changes in local amenities, such as the construction of magnet schools or metro stations, and the flight of wealthy residents from cities in the Rust belt, such as Detroit.
Resumo:
At least since the seminal works of Jacob Mincer, labor economists have sought to understand how students make higher education investment decisions. Mincer’s original work seeks to understand how students decide how much education to accrue; subsequent work by various authors seeks to understand how students choose where to attend college, what field to major in, and whether to drop out of college.
Broadly speaking, this rich sub-field of literature contributes to society in two ways: First, it provides a better understanding of important social behaviors. Second, it helps policymakers anticipate the responses of students when evaluating various policy reforms.
While research on the higher education investment decisions of students has had an enormous impact on our understanding of society and has shaped countless education policies, students are only one interested party in the higher education landscape. In the jargon of economists, students represent only the `demand side’ of higher education---customers who are choosing options from a set of available alternatives. Opposite students are instructors and administrators who represent the `supply side’ of higher education---those who decide which options are available to students.
For similar reasons, it is also important to understand how individuals on the supply side of education make decisions: First, this provides a deeper understanding of the behaviors of important social institutions. Second, it helps policymakers anticipate the responses of instructors and administrators when evaluating various reforms. However, while there is substantial literature understanding decisions made on the demand side of education, there is far less attention paid to decisions on the supply side of education.
This dissertation uses empirical evidence to better understand how instructors and administrators make decisions and the implications of these decisions for students.
In the first chapter, I use data from Duke University and a Bayesian model of correlated learning to measure the signal quality of grades across academic fields. The correlated feature of the model allows grades in one academic field to signal ability in all other fields allowing me to measure both ‘own category' signal quality and ‘spillover' signal quality. Estimates reveal a clear division between information rich Science, Engineering, and Economics grades and less informative Humanities and Social Science grades. In many specifications, information spillovers are so powerful that precise Science, Engineering, and Economics grades are more informative about Humanities and Social Science abilities than Humanities and Social Science grades. This suggests students who take engineering courses during their Freshman year make more informed specialization decisions later in college.
In the second chapter, I use data from the University of Central Arkansas to understand how universities decide which courses to offer and how much to spend on instructors for these courses. Course offerings and instructor characteristics directly affect the courses students choose and the value they receive from these choices. This chapter reveals the university preferences over these student outcomes which best explain observed course offerings and instructors. This allows me to assess whether university incentives are aligned with students, to determine what alternative university choices would be preferred by students, and to illustrate how a revenue neutral tax/subsidy policy can induce a university to make these student-best decisions.
In the third chapter, co-authored with Thomas Ahn, Peter Arcidiacono, and Amy Hopson, we use data from the University of Kentucky to understand how instructors choose grading policies. In this chapter, we estimate an equilibrium model in which instructors choose grading policies and students choose courses and study effort given grading policies. In this model, instructors set both a grading intercept and a return on ability and effort. This builds a rich link between the grading policy decisions of instructors and the course choices of students. We use estimates of this model to infer what preference parameters best explain why instructors chose estimated grading policies. To illustrate the importance of these supply side decisions, we show changing grading policies can substantially reduce the gender gap in STEM enrollment.