2 resultados para SANDY BEACHES

em Duke University


Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is increasingly evident that evolutionary processes play a role in how ecological communities are assembled. However the extend to which evolution influences how plants respond to spatial and environmental gradients and interact with each other is less clear. In this dissertation I leverage evolutionary tools and thinking to understand how space and environment affect community composition and patterns of gene flow in a unique system of Atlantic rainforest and restinga (sandy coastal plains) habitats in Southeastern Brazil.

In chapter one I investigate how space and environment affect the population genetic structure and gene flow of Aechmea nudicaulis, a bromeliad species that co-occurs in forest and restinga habitats. I genotyped seven microsatellite loci and sequenced one chloroplast DNA region for individuals collected in 7 pairs of forest / restinga sites. Bayesian genetic clustering analyses show that populations of A. nudicaulis are geographically structured in northern and southern populations, a pattern consistent with broader scale phylogeographic dynamics of the Atlantic rainforest. On the other hand, explicit migration models based on the coalescent estimate that inter-habitat gene flow is less common than gene flow between populations in the same habitat type, despite their geographic discontinuity. I conclude that there is evidence for repeated colonization of the restingas from forest populations even though the steep environmental gradient between habitats is a stronger barrier to gene flow than geographic distance.

In chapter two I use data on 2800 individual plants finely mapped in a restinga plot and on first-year survival of 500 seedlings to understand the roles of phylogeny, functional traits and abiotic conditions in the spatial structuring of that community. I demonstrate that phylogeny is a poor predictor of functional traits in and that convergence in these traits is pervasive. In general, the community is not phylogenetically structured, with at best 14% of the plots deviating significantly from the null model. The functional traits SLA, leaf dry matter content (LDMC), and maximum height also showed no clear pattern of spatial structuring. On the other hand, leaf area is strongly overdispersed across all spatial scales. Although leaf area overdispersion would be generally taken as evidence of competition, I argue that interpretation is probably misleading. Finally, I show that seedling survival is dramatically increased when they grow shaded by an adult individual, suggesting that seedlings are being facilitated. Phylogenetic distance to their adult neighbor has no influence on rates of survival though. Taken together, these results indicate that phylogeny has very limited influence on the fine scale assembly of restinga communities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© 2015 Published by Elsevier B.V.Tree growth resources and the efficiency of resource-use for biomass production determine the productivity of forest ecosystems. In nutrient-limited forests, nitrogen (N)-fertilization increases foliage [N], which may increase photosynthetic rates, leaf area index (L), and thus light interception (IC). The product of such changes is a higher gross primary production and higher net primary production (NPP). However, fertilization may also alter carbohydrate partitioning from below- to aboveground, increasing aboveground NPP (ANPP). We analyzed effects of long-term N-fertilization on NPP, and that of long-term carbon storing organs (NPPS) in a Pinus sylvestris forest on sandy soil, a wide-ranging forest type in the boreal region. We based our analyses on a combination of destructive harvesting, consecutive mensuration, and optical measurements of canopy openness. After eight-year fertilization with a total of 70gNm-2, ANPP was 27±7% higher in the fertilized (F) relative to the reference (R) stand, but although L increased relative to its pre-fertilization values, IC was not greater than in R. On the seventh year after the treatment initiation, the increase of ANPP was matched by the decrease of belowground NPP (78 vs. 92gCm-2yr-1; ~17% of NPP) and, given the similarity of IC, suggests that the main effect of N-fertilization was changed carbon partitioning rather than increased canopy photosynthesis. Annual NPPS increased linearly with growing season temperature (T) in both treatments, with an upward shift of 70.2gCm-2yr-1 by fertilization, which also caused greater amount of unexplained variation (r2=0.53 in R, 0.21 in F). Residuals of the NPPS-T relationship of F were related to growing season precipitation (P, r2=0.48), indicating that T constrains productivity at this site regardless of fertility, while P is important in determining productivity where N-limitation is alleviated. We estimated that, in a growing season average T (11.5±1.0°C; 33-year-mean), NPPS response to N-fertilization will be nullified with P 31mm less than the mean (325±85mm), and would double with P 109mm greater than the mean. These results suggest that inter-annual variation in climate, particularly in P, may help explaining the reported large variability in growth responses to fertilization of pine stands on sandy soils. Furthermore, forest management of long-rotation systems, such as those of boreal and northern temperate forests, must consider the efficiency of fertilization in terms of wood production in the context of changes in climate predicted for the region.